Cargando…

The effects of lumboperitoneal and ventriculoperitoneal shunts on the cranial and spinal cerebrospinal fluid volume in a patient with idiopathic intracranial hypertension

Lumboperitoneal (LP) and ventriculoperitoneal (VP) shunts are a frequent treatment modality for idiopathic intracranial hypertension (IIH). Although these shunts have been used for a long time, it is still not clear how they change the total craniospinal CSF volume and what portions of cranial and s...

Descripción completa

Detalles Bibliográficos
Autores principales: Nikić, Ines, Radoš, Milan, Frobe, Ana, Vukić, Miroslav, Orešković, Darko, Klarica, Marijan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Croatian Medical Schools 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937228/
https://www.ncbi.nlm.nih.gov/pubmed/27374831
http://dx.doi.org/10.3325/cmj.2016.57.293
Descripción
Sumario:Lumboperitoneal (LP) and ventriculoperitoneal (VP) shunts are a frequent treatment modality for idiopathic intracranial hypertension (IIH). Although these shunts have been used for a long time, it is still not clear how they change the total craniospinal CSF volume and what portions of cranial and spinal CSF are affected. This report for the first time presents the results of a volumetric analysis of the total cranial and spinal CSF space in a patient with IIH. We performed an automated segmentation of the cranial and a manual segmentation of the spinal CSF space first with an LP shunt installed and again after the LP shunt was replaced by a VP shunt. When the LP shunt was in place, the total CSF volume was smaller than when the VP shunt was in place (222.4 cm(3) vs 279.2 cm(3)). The difference was almost completely the result of the spinal CSF volume reduction (49.3 cm(3) and 104.9 cm(3) for LP and VP, respectively), while the cranial CSF volume was not considerably altered (173.2 cm(3) and 174.2 cm(3) for LP and VP, respectively). This report indicates that LP and VP shunts in IIH do not considerably change the cranial CSF volume, while the reduction of CSF volume after LP shunt placement affects almost exclusively the spinal part of the CSF system. Our results suggest that an analysis of both the cranial and the spinal part of the CSF space is necessary for therapeutic procedures planning and for an early recognition of numerous side effects that often arise after shunts placement in IIH patients.