Cargando…
Monosialoganglioside‐Containing Nanoliposomes Restore Endothelial Function Impaired by AL Amyloidosis Light Chain Proteins
BACKGROUND: Light chain amyloidosis (AL) is associated with high mortality, especially in patients with advanced cardiovascular involvement. It is caused by toxicity of misfolded light chain proteins (LC) in vascular, cardiac, and other tissues. There is no treatment to reverse LC tissue toxicity. W...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937272/ https://www.ncbi.nlm.nih.gov/pubmed/27412900 http://dx.doi.org/10.1161/JAHA.116.003318 |
_version_ | 1782441679861579776 |
---|---|
author | Franco, Daniel A. Truran, Seth Weissig, Volkmar Guzman‐Villanueva, Diana Karamanova, Nina Senapati, Subhadip Burciu, Camelia Ramirez‐Alvarado, Marina Blancas‐Mejia, Luis M. Lindsay, Stuart Hari, Parameswaran Migrino, Raymond Q. |
author_facet | Franco, Daniel A. Truran, Seth Weissig, Volkmar Guzman‐Villanueva, Diana Karamanova, Nina Senapati, Subhadip Burciu, Camelia Ramirez‐Alvarado, Marina Blancas‐Mejia, Luis M. Lindsay, Stuart Hari, Parameswaran Migrino, Raymond Q. |
author_sort | Franco, Daniel A. |
collection | PubMed |
description | BACKGROUND: Light chain amyloidosis (AL) is associated with high mortality, especially in patients with advanced cardiovascular involvement. It is caused by toxicity of misfolded light chain proteins (LC) in vascular, cardiac, and other tissues. There is no treatment to reverse LC tissue toxicity. We tested the hypothesis that nanoliposomes composed of monosialoganglioside, phosphatidylcholine, and cholesterol (GM1 ganglioside–containing nanoliposomes [NLGM1]) can protect against LC‐induced human microvascular dysfunction and assess mechanisms behind the protective effect. METHODS AND RESULTS: The dilator responses of ex vivo abdominal adipose arterioles from human participants without AL to acetylcholine and papaverine were measured before and after exposure to LC (20 μg/mL) with or without NLGM1 (1:10 ratio for LC:NLGM1 mass). Human umbilical vein endothelial cells were exposed for 18 to 20 hours to vehicle, LC with or without NLGM1, or NLGM1 and compared for oxidative and nitrative stress response and cellular viability. LC impaired arteriole dilator response to acetylcholine, which was restored by co‐treatment with NLGM1. LC decreased endothelial cell nitric oxide production and cell viability while increasing superoxide and peroxynitrite; these adverse effects were reversed by NLGM1. NLGM1 increased endothelial cell protein expression of antioxidant enzymes heme oxygenase 1 and NAD(P)H quinone dehydrogenase 1 and increased nuclear factor, erythroid 2 like 2 (Nrf‐2) protein. Nrf‐2 gene knockdown reduced antioxidant stress response and reversed the protective effects of NLGM1. CONCLUSIONS: NLGM1 protects against LC‐induced human microvascular endothelial dysfunction through increased nitric oxide bioavailability and reduced oxidative and nitrative stress mediated by Nrf‐2–dependent antioxidant stress response. These findings point to a potential novel therapeutic approach for light chain amyloidosis. |
format | Online Article Text |
id | pubmed-4937272 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-49372722016-07-18 Monosialoganglioside‐Containing Nanoliposomes Restore Endothelial Function Impaired by AL Amyloidosis Light Chain Proteins Franco, Daniel A. Truran, Seth Weissig, Volkmar Guzman‐Villanueva, Diana Karamanova, Nina Senapati, Subhadip Burciu, Camelia Ramirez‐Alvarado, Marina Blancas‐Mejia, Luis M. Lindsay, Stuart Hari, Parameswaran Migrino, Raymond Q. J Am Heart Assoc Original Research BACKGROUND: Light chain amyloidosis (AL) is associated with high mortality, especially in patients with advanced cardiovascular involvement. It is caused by toxicity of misfolded light chain proteins (LC) in vascular, cardiac, and other tissues. There is no treatment to reverse LC tissue toxicity. We tested the hypothesis that nanoliposomes composed of monosialoganglioside, phosphatidylcholine, and cholesterol (GM1 ganglioside–containing nanoliposomes [NLGM1]) can protect against LC‐induced human microvascular dysfunction and assess mechanisms behind the protective effect. METHODS AND RESULTS: The dilator responses of ex vivo abdominal adipose arterioles from human participants without AL to acetylcholine and papaverine were measured before and after exposure to LC (20 μg/mL) with or without NLGM1 (1:10 ratio for LC:NLGM1 mass). Human umbilical vein endothelial cells were exposed for 18 to 20 hours to vehicle, LC with or without NLGM1, or NLGM1 and compared for oxidative and nitrative stress response and cellular viability. LC impaired arteriole dilator response to acetylcholine, which was restored by co‐treatment with NLGM1. LC decreased endothelial cell nitric oxide production and cell viability while increasing superoxide and peroxynitrite; these adverse effects were reversed by NLGM1. NLGM1 increased endothelial cell protein expression of antioxidant enzymes heme oxygenase 1 and NAD(P)H quinone dehydrogenase 1 and increased nuclear factor, erythroid 2 like 2 (Nrf‐2) protein. Nrf‐2 gene knockdown reduced antioxidant stress response and reversed the protective effects of NLGM1. CONCLUSIONS: NLGM1 protects against LC‐induced human microvascular endothelial dysfunction through increased nitric oxide bioavailability and reduced oxidative and nitrative stress mediated by Nrf‐2–dependent antioxidant stress response. These findings point to a potential novel therapeutic approach for light chain amyloidosis. John Wiley and Sons Inc. 2016-06-13 /pmc/articles/PMC4937272/ /pubmed/27412900 http://dx.doi.org/10.1161/JAHA.116.003318 Text en © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Research Franco, Daniel A. Truran, Seth Weissig, Volkmar Guzman‐Villanueva, Diana Karamanova, Nina Senapati, Subhadip Burciu, Camelia Ramirez‐Alvarado, Marina Blancas‐Mejia, Luis M. Lindsay, Stuart Hari, Parameswaran Migrino, Raymond Q. Monosialoganglioside‐Containing Nanoliposomes Restore Endothelial Function Impaired by AL Amyloidosis Light Chain Proteins |
title | Monosialoganglioside‐Containing Nanoliposomes Restore Endothelial Function Impaired by AL Amyloidosis Light Chain Proteins |
title_full | Monosialoganglioside‐Containing Nanoliposomes Restore Endothelial Function Impaired by AL Amyloidosis Light Chain Proteins |
title_fullStr | Monosialoganglioside‐Containing Nanoliposomes Restore Endothelial Function Impaired by AL Amyloidosis Light Chain Proteins |
title_full_unstemmed | Monosialoganglioside‐Containing Nanoliposomes Restore Endothelial Function Impaired by AL Amyloidosis Light Chain Proteins |
title_short | Monosialoganglioside‐Containing Nanoliposomes Restore Endothelial Function Impaired by AL Amyloidosis Light Chain Proteins |
title_sort | monosialoganglioside‐containing nanoliposomes restore endothelial function impaired by al amyloidosis light chain proteins |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937272/ https://www.ncbi.nlm.nih.gov/pubmed/27412900 http://dx.doi.org/10.1161/JAHA.116.003318 |
work_keys_str_mv | AT francodaniela monosialogangliosidecontainingnanoliposomesrestoreendothelialfunctionimpairedbyalamyloidosislightchainproteins AT truranseth monosialogangliosidecontainingnanoliposomesrestoreendothelialfunctionimpairedbyalamyloidosislightchainproteins AT weissigvolkmar monosialogangliosidecontainingnanoliposomesrestoreendothelialfunctionimpairedbyalamyloidosislightchainproteins AT guzmanvillanuevadiana monosialogangliosidecontainingnanoliposomesrestoreendothelialfunctionimpairedbyalamyloidosislightchainproteins AT karamanovanina monosialogangliosidecontainingnanoliposomesrestoreendothelialfunctionimpairedbyalamyloidosislightchainproteins AT senapatisubhadip monosialogangliosidecontainingnanoliposomesrestoreendothelialfunctionimpairedbyalamyloidosislightchainproteins AT burciucamelia monosialogangliosidecontainingnanoliposomesrestoreendothelialfunctionimpairedbyalamyloidosislightchainproteins AT ramirezalvaradomarina monosialogangliosidecontainingnanoliposomesrestoreendothelialfunctionimpairedbyalamyloidosislightchainproteins AT blancasmejialuism monosialogangliosidecontainingnanoliposomesrestoreendothelialfunctionimpairedbyalamyloidosislightchainproteins AT lindsaystuart monosialogangliosidecontainingnanoliposomesrestoreendothelialfunctionimpairedbyalamyloidosislightchainproteins AT hariparameswaran monosialogangliosidecontainingnanoliposomesrestoreendothelialfunctionimpairedbyalamyloidosislightchainproteins AT migrinoraymondq monosialogangliosidecontainingnanoliposomesrestoreendothelialfunctionimpairedbyalamyloidosislightchainproteins |