Cargando…

Goldmine integrates information placing genomic ranges into meaningful biological contexts

Bioinformatic analysis often produces large sets of genomic ranges that can be difficult to interpret in the absence of genomic context. Goldmine annotates genomic ranges from any source with gene model and feature contexts to facilitate global descriptions and candidate loci discovery. We demonstra...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhasin, Jeffrey M., Ting, Angela H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937336/
https://www.ncbi.nlm.nih.gov/pubmed/27257071
http://dx.doi.org/10.1093/nar/gkw477
Descripción
Sumario:Bioinformatic analysis often produces large sets of genomic ranges that can be difficult to interpret in the absence of genomic context. Goldmine annotates genomic ranges from any source with gene model and feature contexts to facilitate global descriptions and candidate loci discovery. We demonstrate the value of genomic context by using Goldmine to elucidate context dynamics in transcription factor binding and to reveal differentially methylated regions (DMRs) with context-specific functional correlations. The open source R package and documentation for Goldmine are available at http://jeffbhasin.github.io/goldmine.