Cargando…
Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer
Radiomics provides a comprehensive quantification of tumor phenotypes by extracting and mining large number of quantitative image features. To reduce the redundancy and compare the prognostic characteristics of radiomic features across cancer types, we investigated cancer-specific radiomic feature c...
Autores principales: | Parmar, Chintan, Leijenaar, Ralph T. H., Grossmann, Patrick, Rios Velazquez, Emmanuel, Bussink, Johan, Rietveld, Derek, Rietbergen, Michelle M., Haibe-Kains, Benjamin, Lambin, Philippe, Aerts, Hugo J.W.L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937496/ https://www.ncbi.nlm.nih.gov/pubmed/26251068 http://dx.doi.org/10.1038/srep11044 |
Ejemplares similares
-
Corrigendum: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
por: Aerts, Hugo J.W.L., et al.
Publicado: (2014) -
Defining the biological basis of radiomic phenotypes in lung cancer
por: Grossmann, Patrick, et al.
Publicado: (2017) -
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
por: Aerts, Hugo J. W. L., et al.
Publicado: (2014) -
Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer
por: Parmar, Chintan, et al.
Publicado: (2015) -
Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation
por: Parmar, Chintan, et al.
Publicado: (2014)