Cargando…

Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus

Reconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of...

Descripción completa

Detalles Bibliográficos
Autores principales: Vakirlis, Nikolaos, Sarilar, Véronique, Drillon, Guénola, Fleiss, Aubin, Agier, Nicolas, Meyniel, Jean-Philippe, Blanpain, Lou, Carbone, Alessandra, Devillers, Hugo, Dubois, Kenny, Gillet-Markowska, Alexandre, Graziani, Stéphane, Huu-Vang, Nguyen, Poirel, Marion, Reisser, Cyrielle, Schott, Jonathan, Schacherer, Joseph, Lafontaine, Ingrid, Llorente, Bertrand, Neuvéglise, Cécile, Fischer, Gilles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937564/
https://www.ncbi.nlm.nih.gov/pubmed/27247244
http://dx.doi.org/10.1101/gr.204420.116
_version_ 1782441729504313344
author Vakirlis, Nikolaos
Sarilar, Véronique
Drillon, Guénola
Fleiss, Aubin
Agier, Nicolas
Meyniel, Jean-Philippe
Blanpain, Lou
Carbone, Alessandra
Devillers, Hugo
Dubois, Kenny
Gillet-Markowska, Alexandre
Graziani, Stéphane
Huu-Vang, Nguyen
Poirel, Marion
Reisser, Cyrielle
Schott, Jonathan
Schacherer, Joseph
Lafontaine, Ingrid
Llorente, Bertrand
Neuvéglise, Cécile
Fischer, Gilles
author_facet Vakirlis, Nikolaos
Sarilar, Véronique
Drillon, Guénola
Fleiss, Aubin
Agier, Nicolas
Meyniel, Jean-Philippe
Blanpain, Lou
Carbone, Alessandra
Devillers, Hugo
Dubois, Kenny
Gillet-Markowska, Alexandre
Graziani, Stéphane
Huu-Vang, Nguyen
Poirel, Marion
Reisser, Cyrielle
Schott, Jonathan
Schacherer, Joseph
Lafontaine, Ingrid
Llorente, Bertrand
Neuvéglise, Cécile
Fischer, Gilles
author_sort Vakirlis, Nikolaos
collection PubMed
description Reconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species. Our approach integrated the generation of a high-quality genome data set; the development of AnChro, a new algorithm for reconstructing ancestral genome architecture; and a comprehensive analysis of gene repertoire evolution. We found that the ancestral genome of the genus Lachancea contained eight chromosomes and about 5173 protein-coding genes. Moreover, we characterized 24 horizontal gene transfers and 159 putative gene creation events that punctuated species diversification. We retraced all chromosomal rearrangements, including gene losses, gene duplications, chromosomal inversions and translocations at single gene resolution. Gene duplications outnumbered losses and balanced rearrangements with 1503, 929, and 423 events, respectively. Gene content variations between extant species are mainly driven by differential gene losses, while gene duplications remained globally constant in all lineages. Remarkably, we discovered that balanced chromosomal rearrangements could be responsible for up to 14% of all gene losses by disrupting genes at their breakpoints. Finally, we found that nonsynonymous substitutions reached fixation at a coordinated pace with chromosomal inversions, translocations, and duplications, but not deletions. Overall, we provide a granular view of genome evolution within an entire eukaryotic genus, linking gene content, chromosome rearrangements, and protein divergence into a single evolutionary framework.
format Online
Article
Text
id pubmed-4937564
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-49375642017-01-01 Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus Vakirlis, Nikolaos Sarilar, Véronique Drillon, Guénola Fleiss, Aubin Agier, Nicolas Meyniel, Jean-Philippe Blanpain, Lou Carbone, Alessandra Devillers, Hugo Dubois, Kenny Gillet-Markowska, Alexandre Graziani, Stéphane Huu-Vang, Nguyen Poirel, Marion Reisser, Cyrielle Schott, Jonathan Schacherer, Joseph Lafontaine, Ingrid Llorente, Bertrand Neuvéglise, Cécile Fischer, Gilles Genome Res Research Reconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species. Our approach integrated the generation of a high-quality genome data set; the development of AnChro, a new algorithm for reconstructing ancestral genome architecture; and a comprehensive analysis of gene repertoire evolution. We found that the ancestral genome of the genus Lachancea contained eight chromosomes and about 5173 protein-coding genes. Moreover, we characterized 24 horizontal gene transfers and 159 putative gene creation events that punctuated species diversification. We retraced all chromosomal rearrangements, including gene losses, gene duplications, chromosomal inversions and translocations at single gene resolution. Gene duplications outnumbered losses and balanced rearrangements with 1503, 929, and 423 events, respectively. Gene content variations between extant species are mainly driven by differential gene losses, while gene duplications remained globally constant in all lineages. Remarkably, we discovered that balanced chromosomal rearrangements could be responsible for up to 14% of all gene losses by disrupting genes at their breakpoints. Finally, we found that nonsynonymous substitutions reached fixation at a coordinated pace with chromosomal inversions, translocations, and duplications, but not deletions. Overall, we provide a granular view of genome evolution within an entire eukaryotic genus, linking gene content, chromosome rearrangements, and protein divergence into a single evolutionary framework. Cold Spring Harbor Laboratory Press 2016-07 /pmc/articles/PMC4937564/ /pubmed/27247244 http://dx.doi.org/10.1101/gr.204420.116 Text en © 2016 Vakirlis et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
spellingShingle Research
Vakirlis, Nikolaos
Sarilar, Véronique
Drillon, Guénola
Fleiss, Aubin
Agier, Nicolas
Meyniel, Jean-Philippe
Blanpain, Lou
Carbone, Alessandra
Devillers, Hugo
Dubois, Kenny
Gillet-Markowska, Alexandre
Graziani, Stéphane
Huu-Vang, Nguyen
Poirel, Marion
Reisser, Cyrielle
Schott, Jonathan
Schacherer, Joseph
Lafontaine, Ingrid
Llorente, Bertrand
Neuvéglise, Cécile
Fischer, Gilles
Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus
title Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus
title_full Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus
title_fullStr Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus
title_full_unstemmed Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus
title_short Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus
title_sort reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937564/
https://www.ncbi.nlm.nih.gov/pubmed/27247244
http://dx.doi.org/10.1101/gr.204420.116
work_keys_str_mv AT vakirlisnikolaos reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT sarilarveronique reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT drillonguenola reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT fleissaubin reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT agiernicolas reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT meynieljeanphilippe reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT blanpainlou reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT carbonealessandra reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT devillershugo reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT duboiskenny reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT gilletmarkowskaalexandre reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT grazianistephane reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT huuvangnguyen reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT poirelmarion reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT reissercyrielle reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT schottjonathan reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT schachererjoseph reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT lafontaineingrid reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT llorentebertrand reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT neuveglisececile reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus
AT fischergilles reconstructionofancestralchromosomearchitectureandgenerepertoirerevealsprinciplesofgenomeevolutioninamodelyeastgenus