Cargando…
Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota
The symbiotic gut microbiota plays an important role in the development and homeostasis of the host organism. Its physiological, biochemical, behavioral, and communicative effects are mediated by multiple low molecular weight compounds. Recent data on small molecules produced by gut microbiota in ma...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Co-Action Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937721/ https://www.ncbi.nlm.nih.gov/pubmed/27389418 http://dx.doi.org/10.3402/mehd.v27.30971 |
_version_ | 1782441761905311744 |
---|---|
author | Oleskin, Alexander V. Shenderov, Boris A. |
author_facet | Oleskin, Alexander V. Shenderov, Boris A. |
author_sort | Oleskin, Alexander V. |
collection | PubMed |
description | The symbiotic gut microbiota plays an important role in the development and homeostasis of the host organism. Its physiological, biochemical, behavioral, and communicative effects are mediated by multiple low molecular weight compounds. Recent data on small molecules produced by gut microbiota in mammalian organisms demonstrate the paramount importance of these biologically active molecules in terms of biology and medicine. Many of these molecules are pleiotropic mediators exerting effects on various tissues and organs. This review is focused on the functional roles of gaseous molecules that perform neuromediator and/or endocrine functions. The molecular mechanisms that underlie the effects of microbial fermentation-derived gaseous metabolites are not well understood. It is possible that these metabolites produce their effects via immunological, biochemical, and neuroendocrine mechanisms that involve endogenous and microbial modulators and transmitters; of considerable importance are also changes in epigenetic transcriptional factors, protein post-translational modification, lipid and mitochondrial metabolism, redox signaling, and ion channel/gap junction/transporter regulation. Recent findings have revealed that interactivity among such modulators/transmitters is a prerequisite for the ongoing dialog between microbial cells and host cells, including neurons. Using simple reliable methods for the detection and measurement of short-chain fatty acids (SCFAs) and small gaseous molecules in eukaryotic tissues and prokaryotic cells, selective inhibitors of enzymes that participate in their synthesis, as well as safe chemical and microbial donors of pleiotropic mediators and modulators of host intestinal microbial ecology, should enable us to apply these chemicals as novel therapeutics and medical research tools. |
format | Online Article Text |
id | pubmed-4937721 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Co-Action Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-49377212016-08-01 Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota Oleskin, Alexander V. Shenderov, Boris A. Microb Ecol Health Dis Review Article The symbiotic gut microbiota plays an important role in the development and homeostasis of the host organism. Its physiological, biochemical, behavioral, and communicative effects are mediated by multiple low molecular weight compounds. Recent data on small molecules produced by gut microbiota in mammalian organisms demonstrate the paramount importance of these biologically active molecules in terms of biology and medicine. Many of these molecules are pleiotropic mediators exerting effects on various tissues and organs. This review is focused on the functional roles of gaseous molecules that perform neuromediator and/or endocrine functions. The molecular mechanisms that underlie the effects of microbial fermentation-derived gaseous metabolites are not well understood. It is possible that these metabolites produce their effects via immunological, biochemical, and neuroendocrine mechanisms that involve endogenous and microbial modulators and transmitters; of considerable importance are also changes in epigenetic transcriptional factors, protein post-translational modification, lipid and mitochondrial metabolism, redox signaling, and ion channel/gap junction/transporter regulation. Recent findings have revealed that interactivity among such modulators/transmitters is a prerequisite for the ongoing dialog between microbial cells and host cells, including neurons. Using simple reliable methods for the detection and measurement of short-chain fatty acids (SCFAs) and small gaseous molecules in eukaryotic tissues and prokaryotic cells, selective inhibitors of enzymes that participate in their synthesis, as well as safe chemical and microbial donors of pleiotropic mediators and modulators of host intestinal microbial ecology, should enable us to apply these chemicals as novel therapeutics and medical research tools. Co-Action Publishing 2016-07-05 /pmc/articles/PMC4937721/ /pubmed/27389418 http://dx.doi.org/10.3402/mehd.v27.30971 Text en © 2016 Alexander V. Oleskin and Boris A. Shenderov http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Oleskin, Alexander V. Shenderov, Boris A. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota |
title | Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota |
title_full | Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota |
title_fullStr | Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota |
title_full_unstemmed | Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota |
title_short | Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota |
title_sort | neuromodulatory effects and targets of the scfas and gasotransmitters produced by the human symbiotic microbiota |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937721/ https://www.ncbi.nlm.nih.gov/pubmed/27389418 http://dx.doi.org/10.3402/mehd.v27.30971 |
work_keys_str_mv | AT oleskinalexanderv neuromodulatoryeffectsandtargetsofthescfasandgasotransmittersproducedbythehumansymbioticmicrobiota AT shenderovborisa neuromodulatoryeffectsandtargetsofthescfasandgasotransmittersproducedbythehumansymbioticmicrobiota |