Cargando…
RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR
The ability to easily and efficiently analyse RNA-sequencing data is a key strength of the Bioconductor project. Starting with counts summarised at the gene-level, a typical analysis involves pre-processing, exploratory data analysis, differential expression testing and pathway analysis with the res...
Autores principales: | Law, Charity W., Alhamdoosh, Monther, Su, Shian, Dong, Xueyi, Tian, Luyi, Smyth, Gordon K., Ritchie, Matthew E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937821/ https://www.ncbi.nlm.nih.gov/pubmed/27441086 http://dx.doi.org/10.12688/f1000research.9005.3 |
Ejemplares similares
-
Easy and efficient ensemble gene set testing with EGSEA
por: Alhamdoosh, Monther, et al.
Publicado: (2017) -
edgeR: a versatile tool for the analysis of shRNA-seq and CRISPR-Cas9 genetic screens
por: Dai, Zhiyin, et al.
Publicado: (2014) -
From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline
por: Chen, Yunshun, et al.
Publicado: (2016) -
Dashboard-style interactive plots for RNA-seq analysis are R Markdown ready with Glimma 2.0
por: Kariyawasam, Hasaru, et al.
Publicado: (2021) -
Glimma: interactive graphics for gene expression analysis
por: Su, Shian, et al.
Publicado: (2017)