_version_ 1782441783696818176
author Mansouri, Kamel
Abdelaziz, Ahmed
Rybacka, Aleksandra
Roncaglioni, Alessandra
Tropsha, Alexander
Varnek, Alexandre
Zakharov, Alexey
Worth, Andrew
Richard, Ann M.
Grulke, Christopher M.
Trisciuzzi, Daniela
Fourches, Denis
Horvath, Dragos
Benfenati, Emilio
Muratov, Eugene
Wedebye, Eva Bay
Grisoni, Francesca
Mangiatordi, Giuseppe F.
Incisivo, Giuseppina M.
Hong, Huixiao
Ng, Hui W.
Tetko, Igor V.
Balabin, Ilya
Kancherla, Jayaram
Shen, Jie
Burton, Julien
Nicklaus, Marc
Cassotti, Matteo
Nikolov, Nikolai G.
Nicolotti, Orazio
Andersson, Patrik L.
Zang, Qingda
Politi, Regina
Beger, Richard D.
Todeschini, Roberto
Huang, Ruili
Farag, Sherif
Rosenberg, Sine A.
Slavov, Svetoslav
Hu, Xin
Judson, Richard S.
author_facet Mansouri, Kamel
Abdelaziz, Ahmed
Rybacka, Aleksandra
Roncaglioni, Alessandra
Tropsha, Alexander
Varnek, Alexandre
Zakharov, Alexey
Worth, Andrew
Richard, Ann M.
Grulke, Christopher M.
Trisciuzzi, Daniela
Fourches, Denis
Horvath, Dragos
Benfenati, Emilio
Muratov, Eugene
Wedebye, Eva Bay
Grisoni, Francesca
Mangiatordi, Giuseppe F.
Incisivo, Giuseppina M.
Hong, Huixiao
Ng, Hui W.
Tetko, Igor V.
Balabin, Ilya
Kancherla, Jayaram
Shen, Jie
Burton, Julien
Nicklaus, Marc
Cassotti, Matteo
Nikolov, Nikolai G.
Nicolotti, Orazio
Andersson, Patrik L.
Zang, Qingda
Politi, Regina
Beger, Richard D.
Todeschini, Roberto
Huang, Ruili
Farag, Sherif
Rosenberg, Sine A.
Slavov, Svetoslav
Hu, Xin
Judson, Richard S.
author_sort Mansouri, Kamel
collection PubMed
description BACKGROUND: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. OBJECTIVES: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. METHODS: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. RESULTS: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. CONCLUSION: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other end points. CITATION: Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A, Zakharov A, Worth A, Richard AM, Grulke CM, Trisciuzzi D, Fourches D, Horvath D, Benfenati E, Muratov E, Wedebye EB, Grisoni F, Mangiatordi GF, Incisivo GM, Hong H, Ng HW, Tetko IV, Balabin I, Kancherla J, Shen J, Burton J, Nicklaus M, Cassotti M, Nikolov NG, Nicolotti O, Andersson PL, Zang Q, Politi R, Beger RD, Todeschini R, Huang R, Farag S, Rosenberg SA, Slavov S, Hu X, Judson RS. 2016. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. Environ Health Perspect 124:1023–1033; http://dx.doi.org/10.1289/ehp.1510267
format Online
Article
Text
id pubmed-4937869
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher National Institute of Environmental Health Sciences
record_format MEDLINE/PubMed
spelling pubmed-49378692016-07-13 CERAPP: Collaborative Estrogen Receptor Activity Prediction Project Mansouri, Kamel Abdelaziz, Ahmed Rybacka, Aleksandra Roncaglioni, Alessandra Tropsha, Alexander Varnek, Alexandre Zakharov, Alexey Worth, Andrew Richard, Ann M. Grulke, Christopher M. Trisciuzzi, Daniela Fourches, Denis Horvath, Dragos Benfenati, Emilio Muratov, Eugene Wedebye, Eva Bay Grisoni, Francesca Mangiatordi, Giuseppe F. Incisivo, Giuseppina M. Hong, Huixiao Ng, Hui W. Tetko, Igor V. Balabin, Ilya Kancherla, Jayaram Shen, Jie Burton, Julien Nicklaus, Marc Cassotti, Matteo Nikolov, Nikolai G. Nicolotti, Orazio Andersson, Patrik L. Zang, Qingda Politi, Regina Beger, Richard D. Todeschini, Roberto Huang, Ruili Farag, Sherif Rosenberg, Sine A. Slavov, Svetoslav Hu, Xin Judson, Richard S. Environ Health Perspect Research BACKGROUND: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. OBJECTIVES: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. METHODS: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. RESULTS: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. CONCLUSION: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other end points. CITATION: Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A, Zakharov A, Worth A, Richard AM, Grulke CM, Trisciuzzi D, Fourches D, Horvath D, Benfenati E, Muratov E, Wedebye EB, Grisoni F, Mangiatordi GF, Incisivo GM, Hong H, Ng HW, Tetko IV, Balabin I, Kancherla J, Shen J, Burton J, Nicklaus M, Cassotti M, Nikolov NG, Nicolotti O, Andersson PL, Zang Q, Politi R, Beger RD, Todeschini R, Huang R, Farag S, Rosenberg SA, Slavov S, Hu X, Judson RS. 2016. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. Environ Health Perspect 124:1023–1033; http://dx.doi.org/10.1289/ehp.1510267 National Institute of Environmental Health Sciences 2016-02-23 2016-07 /pmc/articles/PMC4937869/ /pubmed/26908244 http://dx.doi.org/10.1289/ehp.1510267 Text en http://creativecommons.org/publicdomain/mark/1.0/ Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.
spellingShingle Research
Mansouri, Kamel
Abdelaziz, Ahmed
Rybacka, Aleksandra
Roncaglioni, Alessandra
Tropsha, Alexander
Varnek, Alexandre
Zakharov, Alexey
Worth, Andrew
Richard, Ann M.
Grulke, Christopher M.
Trisciuzzi, Daniela
Fourches, Denis
Horvath, Dragos
Benfenati, Emilio
Muratov, Eugene
Wedebye, Eva Bay
Grisoni, Francesca
Mangiatordi, Giuseppe F.
Incisivo, Giuseppina M.
Hong, Huixiao
Ng, Hui W.
Tetko, Igor V.
Balabin, Ilya
Kancherla, Jayaram
Shen, Jie
Burton, Julien
Nicklaus, Marc
Cassotti, Matteo
Nikolov, Nikolai G.
Nicolotti, Orazio
Andersson, Patrik L.
Zang, Qingda
Politi, Regina
Beger, Richard D.
Todeschini, Roberto
Huang, Ruili
Farag, Sherif
Rosenberg, Sine A.
Slavov, Svetoslav
Hu, Xin
Judson, Richard S.
CERAPP: Collaborative Estrogen Receptor Activity Prediction Project
title CERAPP: Collaborative Estrogen Receptor Activity Prediction Project
title_full CERAPP: Collaborative Estrogen Receptor Activity Prediction Project
title_fullStr CERAPP: Collaborative Estrogen Receptor Activity Prediction Project
title_full_unstemmed CERAPP: Collaborative Estrogen Receptor Activity Prediction Project
title_short CERAPP: Collaborative Estrogen Receptor Activity Prediction Project
title_sort cerapp: collaborative estrogen receptor activity prediction project
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937869/
https://www.ncbi.nlm.nih.gov/pubmed/26908244
http://dx.doi.org/10.1289/ehp.1510267
work_keys_str_mv AT mansourikamel cerappcollaborativeestrogenreceptoractivitypredictionproject
AT abdelazizahmed cerappcollaborativeestrogenreceptoractivitypredictionproject
AT rybackaaleksandra cerappcollaborativeestrogenreceptoractivitypredictionproject
AT roncaglionialessandra cerappcollaborativeestrogenreceptoractivitypredictionproject
AT tropshaalexander cerappcollaborativeestrogenreceptoractivitypredictionproject
AT varnekalexandre cerappcollaborativeestrogenreceptoractivitypredictionproject
AT zakharovalexey cerappcollaborativeestrogenreceptoractivitypredictionproject
AT worthandrew cerappcollaborativeestrogenreceptoractivitypredictionproject
AT richardannm cerappcollaborativeestrogenreceptoractivitypredictionproject
AT grulkechristopherm cerappcollaborativeestrogenreceptoractivitypredictionproject
AT trisciuzzidaniela cerappcollaborativeestrogenreceptoractivitypredictionproject
AT fourchesdenis cerappcollaborativeestrogenreceptoractivitypredictionproject
AT horvathdragos cerappcollaborativeestrogenreceptoractivitypredictionproject
AT benfenatiemilio cerappcollaborativeestrogenreceptoractivitypredictionproject
AT muratoveugene cerappcollaborativeestrogenreceptoractivitypredictionproject
AT wedebyeevabay cerappcollaborativeestrogenreceptoractivitypredictionproject
AT grisonifrancesca cerappcollaborativeestrogenreceptoractivitypredictionproject
AT mangiatordigiuseppef cerappcollaborativeestrogenreceptoractivitypredictionproject
AT incisivogiuseppinam cerappcollaborativeestrogenreceptoractivitypredictionproject
AT honghuixiao cerappcollaborativeestrogenreceptoractivitypredictionproject
AT nghuiw cerappcollaborativeestrogenreceptoractivitypredictionproject
AT tetkoigorv cerappcollaborativeestrogenreceptoractivitypredictionproject
AT balabinilya cerappcollaborativeestrogenreceptoractivitypredictionproject
AT kancherlajayaram cerappcollaborativeestrogenreceptoractivitypredictionproject
AT shenjie cerappcollaborativeestrogenreceptoractivitypredictionproject
AT burtonjulien cerappcollaborativeestrogenreceptoractivitypredictionproject
AT nicklausmarc cerappcollaborativeestrogenreceptoractivitypredictionproject
AT cassottimatteo cerappcollaborativeestrogenreceptoractivitypredictionproject
AT nikolovnikolaig cerappcollaborativeestrogenreceptoractivitypredictionproject
AT nicolottiorazio cerappcollaborativeestrogenreceptoractivitypredictionproject
AT anderssonpatrikl cerappcollaborativeestrogenreceptoractivitypredictionproject
AT zangqingda cerappcollaborativeestrogenreceptoractivitypredictionproject
AT politiregina cerappcollaborativeestrogenreceptoractivitypredictionproject
AT begerrichardd cerappcollaborativeestrogenreceptoractivitypredictionproject
AT todeschiniroberto cerappcollaborativeestrogenreceptoractivitypredictionproject
AT huangruili cerappcollaborativeestrogenreceptoractivitypredictionproject
AT faragsherif cerappcollaborativeestrogenreceptoractivitypredictionproject
AT rosenbergsinea cerappcollaborativeestrogenreceptoractivitypredictionproject
AT slavovsvetoslav cerappcollaborativeestrogenreceptoractivitypredictionproject
AT huxin cerappcollaborativeestrogenreceptoractivitypredictionproject
AT judsonrichards cerappcollaborativeestrogenreceptoractivitypredictionproject