Cargando…
CERAPP: Collaborative Estrogen Receptor Activity Prediction Project
BACKGROUND: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER)...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Institute of Environmental Health Sciences
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937869/ https://www.ncbi.nlm.nih.gov/pubmed/26908244 http://dx.doi.org/10.1289/ehp.1510267 |
_version_ | 1782441783696818176 |
---|---|
author | Mansouri, Kamel Abdelaziz, Ahmed Rybacka, Aleksandra Roncaglioni, Alessandra Tropsha, Alexander Varnek, Alexandre Zakharov, Alexey Worth, Andrew Richard, Ann M. Grulke, Christopher M. Trisciuzzi, Daniela Fourches, Denis Horvath, Dragos Benfenati, Emilio Muratov, Eugene Wedebye, Eva Bay Grisoni, Francesca Mangiatordi, Giuseppe F. Incisivo, Giuseppina M. Hong, Huixiao Ng, Hui W. Tetko, Igor V. Balabin, Ilya Kancherla, Jayaram Shen, Jie Burton, Julien Nicklaus, Marc Cassotti, Matteo Nikolov, Nikolai G. Nicolotti, Orazio Andersson, Patrik L. Zang, Qingda Politi, Regina Beger, Richard D. Todeschini, Roberto Huang, Ruili Farag, Sherif Rosenberg, Sine A. Slavov, Svetoslav Hu, Xin Judson, Richard S. |
author_facet | Mansouri, Kamel Abdelaziz, Ahmed Rybacka, Aleksandra Roncaglioni, Alessandra Tropsha, Alexander Varnek, Alexandre Zakharov, Alexey Worth, Andrew Richard, Ann M. Grulke, Christopher M. Trisciuzzi, Daniela Fourches, Denis Horvath, Dragos Benfenati, Emilio Muratov, Eugene Wedebye, Eva Bay Grisoni, Francesca Mangiatordi, Giuseppe F. Incisivo, Giuseppina M. Hong, Huixiao Ng, Hui W. Tetko, Igor V. Balabin, Ilya Kancherla, Jayaram Shen, Jie Burton, Julien Nicklaus, Marc Cassotti, Matteo Nikolov, Nikolai G. Nicolotti, Orazio Andersson, Patrik L. Zang, Qingda Politi, Regina Beger, Richard D. Todeschini, Roberto Huang, Ruili Farag, Sherif Rosenberg, Sine A. Slavov, Svetoslav Hu, Xin Judson, Richard S. |
author_sort | Mansouri, Kamel |
collection | PubMed |
description | BACKGROUND: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. OBJECTIVES: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. METHODS: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. RESULTS: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. CONCLUSION: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other end points. CITATION: Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A, Zakharov A, Worth A, Richard AM, Grulke CM, Trisciuzzi D, Fourches D, Horvath D, Benfenati E, Muratov E, Wedebye EB, Grisoni F, Mangiatordi GF, Incisivo GM, Hong H, Ng HW, Tetko IV, Balabin I, Kancherla J, Shen J, Burton J, Nicklaus M, Cassotti M, Nikolov NG, Nicolotti O, Andersson PL, Zang Q, Politi R, Beger RD, Todeschini R, Huang R, Farag S, Rosenberg SA, Slavov S, Hu X, Judson RS. 2016. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. Environ Health Perspect 124:1023–1033; http://dx.doi.org/10.1289/ehp.1510267 |
format | Online Article Text |
id | pubmed-4937869 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | National Institute of Environmental Health Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-49378692016-07-13 CERAPP: Collaborative Estrogen Receptor Activity Prediction Project Mansouri, Kamel Abdelaziz, Ahmed Rybacka, Aleksandra Roncaglioni, Alessandra Tropsha, Alexander Varnek, Alexandre Zakharov, Alexey Worth, Andrew Richard, Ann M. Grulke, Christopher M. Trisciuzzi, Daniela Fourches, Denis Horvath, Dragos Benfenati, Emilio Muratov, Eugene Wedebye, Eva Bay Grisoni, Francesca Mangiatordi, Giuseppe F. Incisivo, Giuseppina M. Hong, Huixiao Ng, Hui W. Tetko, Igor V. Balabin, Ilya Kancherla, Jayaram Shen, Jie Burton, Julien Nicklaus, Marc Cassotti, Matteo Nikolov, Nikolai G. Nicolotti, Orazio Andersson, Patrik L. Zang, Qingda Politi, Regina Beger, Richard D. Todeschini, Roberto Huang, Ruili Farag, Sherif Rosenberg, Sine A. Slavov, Svetoslav Hu, Xin Judson, Richard S. Environ Health Perspect Research BACKGROUND: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. OBJECTIVES: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. METHODS: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. RESULTS: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. CONCLUSION: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other end points. CITATION: Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A, Zakharov A, Worth A, Richard AM, Grulke CM, Trisciuzzi D, Fourches D, Horvath D, Benfenati E, Muratov E, Wedebye EB, Grisoni F, Mangiatordi GF, Incisivo GM, Hong H, Ng HW, Tetko IV, Balabin I, Kancherla J, Shen J, Burton J, Nicklaus M, Cassotti M, Nikolov NG, Nicolotti O, Andersson PL, Zang Q, Politi R, Beger RD, Todeschini R, Huang R, Farag S, Rosenberg SA, Slavov S, Hu X, Judson RS. 2016. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. Environ Health Perspect 124:1023–1033; http://dx.doi.org/10.1289/ehp.1510267 National Institute of Environmental Health Sciences 2016-02-23 2016-07 /pmc/articles/PMC4937869/ /pubmed/26908244 http://dx.doi.org/10.1289/ehp.1510267 Text en http://creativecommons.org/publicdomain/mark/1.0/ Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright. |
spellingShingle | Research Mansouri, Kamel Abdelaziz, Ahmed Rybacka, Aleksandra Roncaglioni, Alessandra Tropsha, Alexander Varnek, Alexandre Zakharov, Alexey Worth, Andrew Richard, Ann M. Grulke, Christopher M. Trisciuzzi, Daniela Fourches, Denis Horvath, Dragos Benfenati, Emilio Muratov, Eugene Wedebye, Eva Bay Grisoni, Francesca Mangiatordi, Giuseppe F. Incisivo, Giuseppina M. Hong, Huixiao Ng, Hui W. Tetko, Igor V. Balabin, Ilya Kancherla, Jayaram Shen, Jie Burton, Julien Nicklaus, Marc Cassotti, Matteo Nikolov, Nikolai G. Nicolotti, Orazio Andersson, Patrik L. Zang, Qingda Politi, Regina Beger, Richard D. Todeschini, Roberto Huang, Ruili Farag, Sherif Rosenberg, Sine A. Slavov, Svetoslav Hu, Xin Judson, Richard S. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project |
title | CERAPP: Collaborative Estrogen Receptor Activity Prediction Project |
title_full | CERAPP: Collaborative Estrogen Receptor Activity Prediction Project |
title_fullStr | CERAPP: Collaborative Estrogen Receptor Activity Prediction Project |
title_full_unstemmed | CERAPP: Collaborative Estrogen Receptor Activity Prediction Project |
title_short | CERAPP: Collaborative Estrogen Receptor Activity Prediction Project |
title_sort | cerapp: collaborative estrogen receptor activity prediction project |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937869/ https://www.ncbi.nlm.nih.gov/pubmed/26908244 http://dx.doi.org/10.1289/ehp.1510267 |
work_keys_str_mv | AT mansourikamel cerappcollaborativeestrogenreceptoractivitypredictionproject AT abdelazizahmed cerappcollaborativeestrogenreceptoractivitypredictionproject AT rybackaaleksandra cerappcollaborativeestrogenreceptoractivitypredictionproject AT roncaglionialessandra cerappcollaborativeestrogenreceptoractivitypredictionproject AT tropshaalexander cerappcollaborativeestrogenreceptoractivitypredictionproject AT varnekalexandre cerappcollaborativeestrogenreceptoractivitypredictionproject AT zakharovalexey cerappcollaborativeestrogenreceptoractivitypredictionproject AT worthandrew cerappcollaborativeestrogenreceptoractivitypredictionproject AT richardannm cerappcollaborativeestrogenreceptoractivitypredictionproject AT grulkechristopherm cerappcollaborativeestrogenreceptoractivitypredictionproject AT trisciuzzidaniela cerappcollaborativeestrogenreceptoractivitypredictionproject AT fourchesdenis cerappcollaborativeestrogenreceptoractivitypredictionproject AT horvathdragos cerappcollaborativeestrogenreceptoractivitypredictionproject AT benfenatiemilio cerappcollaborativeestrogenreceptoractivitypredictionproject AT muratoveugene cerappcollaborativeestrogenreceptoractivitypredictionproject AT wedebyeevabay cerappcollaborativeestrogenreceptoractivitypredictionproject AT grisonifrancesca cerappcollaborativeestrogenreceptoractivitypredictionproject AT mangiatordigiuseppef cerappcollaborativeestrogenreceptoractivitypredictionproject AT incisivogiuseppinam cerappcollaborativeestrogenreceptoractivitypredictionproject AT honghuixiao cerappcollaborativeestrogenreceptoractivitypredictionproject AT nghuiw cerappcollaborativeestrogenreceptoractivitypredictionproject AT tetkoigorv cerappcollaborativeestrogenreceptoractivitypredictionproject AT balabinilya cerappcollaborativeestrogenreceptoractivitypredictionproject AT kancherlajayaram cerappcollaborativeestrogenreceptoractivitypredictionproject AT shenjie cerappcollaborativeestrogenreceptoractivitypredictionproject AT burtonjulien cerappcollaborativeestrogenreceptoractivitypredictionproject AT nicklausmarc cerappcollaborativeestrogenreceptoractivitypredictionproject AT cassottimatteo cerappcollaborativeestrogenreceptoractivitypredictionproject AT nikolovnikolaig cerappcollaborativeestrogenreceptoractivitypredictionproject AT nicolottiorazio cerappcollaborativeestrogenreceptoractivitypredictionproject AT anderssonpatrikl cerappcollaborativeestrogenreceptoractivitypredictionproject AT zangqingda cerappcollaborativeestrogenreceptoractivitypredictionproject AT politiregina cerappcollaborativeestrogenreceptoractivitypredictionproject AT begerrichardd cerappcollaborativeestrogenreceptoractivitypredictionproject AT todeschiniroberto cerappcollaborativeestrogenreceptoractivitypredictionproject AT huangruili cerappcollaborativeestrogenreceptoractivitypredictionproject AT faragsherif cerappcollaborativeestrogenreceptoractivitypredictionproject AT rosenbergsinea cerappcollaborativeestrogenreceptoractivitypredictionproject AT slavovsvetoslav cerappcollaborativeestrogenreceptoractivitypredictionproject AT huxin cerappcollaborativeestrogenreceptoractivitypredictionproject AT judsonrichards cerappcollaborativeestrogenreceptoractivitypredictionproject |