Cargando…
Multi-Scale Gaussian Normalization for Solar Image Processing
Extreme ultra-violet images of the corona contain information over a wide range of spatial scales, and different structures such as active regions, quiet Sun, and filament channels contain information at very different brightness regimes. Processing of these images is important to reveal information...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938016/ https://www.ncbi.nlm.nih.gov/pubmed/27445418 http://dx.doi.org/10.1007/s11207-014-0523-9 |
_version_ | 1782441805353058304 |
---|---|
author | Morgan, Huw Druckmüller, Miloslav |
author_facet | Morgan, Huw Druckmüller, Miloslav |
author_sort | Morgan, Huw |
collection | PubMed |
description | Extreme ultra-violet images of the corona contain information over a wide range of spatial scales, and different structures such as active regions, quiet Sun, and filament channels contain information at very different brightness regimes. Processing of these images is important to reveal information, often hidden within the data, without introducing artefacts or bias. It is also important that any process be computationally efficient, particularly given the fine spatial and temporal resolution of Atmospheric Imaging Assembly on the Solar Dynamics Observatory (AIA/SDO), and consideration of future higher resolution observations. A very efficient process is described here, which is based on localised normalising of the data at many different spatial scales. The method reveals information at the finest scales whilst maintaining enough of the larger-scale information to provide context. It also intrinsically flattens noisy regions and can reveal structure in off-limb regions out to the edge of the field of view. We also applied the method successfully to a white-light coronagraph observation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11207-014-0523-9) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4938016 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-49380162016-07-19 Multi-Scale Gaussian Normalization for Solar Image Processing Morgan, Huw Druckmüller, Miloslav Sol Phys Article Extreme ultra-violet images of the corona contain information over a wide range of spatial scales, and different structures such as active regions, quiet Sun, and filament channels contain information at very different brightness regimes. Processing of these images is important to reveal information, often hidden within the data, without introducing artefacts or bias. It is also important that any process be computationally efficient, particularly given the fine spatial and temporal resolution of Atmospheric Imaging Assembly on the Solar Dynamics Observatory (AIA/SDO), and consideration of future higher resolution observations. A very efficient process is described here, which is based on localised normalising of the data at many different spatial scales. The method reveals information at the finest scales whilst maintaining enough of the larger-scale information to provide context. It also intrinsically flattens noisy regions and can reveal structure in off-limb regions out to the edge of the field of view. We also applied the method successfully to a white-light coronagraph observation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11207-014-0523-9) contains supplementary material, which is available to authorized users. Springer Netherlands 2014-04-08 2014 /pmc/articles/PMC4938016/ /pubmed/27445418 http://dx.doi.org/10.1007/s11207-014-0523-9 Text en © The Author(s) 2014 https://creativecommons.org/licenses/by/4.0/ Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Article Morgan, Huw Druckmüller, Miloslav Multi-Scale Gaussian Normalization for Solar Image Processing |
title | Multi-Scale Gaussian Normalization for Solar Image Processing |
title_full | Multi-Scale Gaussian Normalization for Solar Image Processing |
title_fullStr | Multi-Scale Gaussian Normalization for Solar Image Processing |
title_full_unstemmed | Multi-Scale Gaussian Normalization for Solar Image Processing |
title_short | Multi-Scale Gaussian Normalization for Solar Image Processing |
title_sort | multi-scale gaussian normalization for solar image processing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938016/ https://www.ncbi.nlm.nih.gov/pubmed/27445418 http://dx.doi.org/10.1007/s11207-014-0523-9 |
work_keys_str_mv | AT morganhuw multiscalegaussiannormalizationforsolarimageprocessing AT druckmullermiloslav multiscalegaussiannormalizationforsolarimageprocessing |