Cargando…
Expression Patterns of Three UGT Genes in Different Chemotype Safflower Lines and under MeJA Stimulus Revealed Their Potential Role in Flavonoid Biosynthesis
Safflower (Carthamus tinctorius L.) has received a significant amount of attention as a medicinal plant in China. Flavonoids are the dominant active medical compounds. UDP-glycosyltransferase plays an essential role in the biosynthesis and storage of flavonoids in safflower. In this study, 45 UGT un...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938162/ https://www.ncbi.nlm.nih.gov/pubmed/27391785 http://dx.doi.org/10.1371/journal.pone.0158159 |
_version_ | 1782441818992934912 |
---|---|
author | Guo, Dan-Dan Liu, Fei Tu, Yan-Hua He, Bei-Xuan Gao, Yue Guo, Mei-Li |
author_facet | Guo, Dan-Dan Liu, Fei Tu, Yan-Hua He, Bei-Xuan Gao, Yue Guo, Mei-Li |
author_sort | Guo, Dan-Dan |
collection | PubMed |
description | Safflower (Carthamus tinctorius L.) has received a significant amount of attention as a medicinal plant in China. Flavonoids are the dominant active medical compounds. UDP-glycosyltransferase plays an essential role in the biosynthesis and storage of flavonoids in safflower. In this study, 45 UGT unigenes were screened from our transcriptomic database of safflower. Among them, 27 UGT unigenes were predicted to own a complete open reading frame with various pI and Mw. The phylogenetic tree showed that CtUGT3 and CtUGT16 were classified under the UGT71 subfamily involved in metabolite process, whereas CtUGT25 has high identities with PoUGT both catalyzing the glycosylation of flavonoids and belonging to the UGT90 subfamily. cDNA microarray exhibited that the three UGT genes displayed temporal difference in two chemotype safflower lines. To functionally characterize UGT in safflower, CtUGT3, CtUGT16 and CtUGT25 were cloned and analyzed. Subcellular localization suggested that the three UGTs might be located in the cell cytoplasm and chloroplast. The expression pattern showed that the three UGTs were all suppressed in two lines responsive to methyl jasmonate induction. The co-expression relation of expression pattern and metabolite accumulation demonstrated that CtUGT3 and CtUGT25 were positively related to kaempferol-3-O-β-D-glucoside and CtUGT16 was positively related to quercetin-3-O-β-D-glucoside in yellow line, whereas CtUGT3 and CtUGT25 were positively related to quercetin-3-O-β-D-glucoside in white line. This study indicates that the three CtUGTs play a significant and multiple role in flavonoids biosynthesis with presenting different functional characterization in two safflower lines. |
format | Online Article Text |
id | pubmed-4938162 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49381622016-07-22 Expression Patterns of Three UGT Genes in Different Chemotype Safflower Lines and under MeJA Stimulus Revealed Their Potential Role in Flavonoid Biosynthesis Guo, Dan-Dan Liu, Fei Tu, Yan-Hua He, Bei-Xuan Gao, Yue Guo, Mei-Li PLoS One Research Article Safflower (Carthamus tinctorius L.) has received a significant amount of attention as a medicinal plant in China. Flavonoids are the dominant active medical compounds. UDP-glycosyltransferase plays an essential role in the biosynthesis and storage of flavonoids in safflower. In this study, 45 UGT unigenes were screened from our transcriptomic database of safflower. Among them, 27 UGT unigenes were predicted to own a complete open reading frame with various pI and Mw. The phylogenetic tree showed that CtUGT3 and CtUGT16 were classified under the UGT71 subfamily involved in metabolite process, whereas CtUGT25 has high identities with PoUGT both catalyzing the glycosylation of flavonoids and belonging to the UGT90 subfamily. cDNA microarray exhibited that the three UGT genes displayed temporal difference in two chemotype safflower lines. To functionally characterize UGT in safflower, CtUGT3, CtUGT16 and CtUGT25 were cloned and analyzed. Subcellular localization suggested that the three UGTs might be located in the cell cytoplasm and chloroplast. The expression pattern showed that the three UGTs were all suppressed in two lines responsive to methyl jasmonate induction. The co-expression relation of expression pattern and metabolite accumulation demonstrated that CtUGT3 and CtUGT25 were positively related to kaempferol-3-O-β-D-glucoside and CtUGT16 was positively related to quercetin-3-O-β-D-glucoside in yellow line, whereas CtUGT3 and CtUGT25 were positively related to quercetin-3-O-β-D-glucoside in white line. This study indicates that the three CtUGTs play a significant and multiple role in flavonoids biosynthesis with presenting different functional characterization in two safflower lines. Public Library of Science 2016-07-08 /pmc/articles/PMC4938162/ /pubmed/27391785 http://dx.doi.org/10.1371/journal.pone.0158159 Text en © 2016 Guo et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Guo, Dan-Dan Liu, Fei Tu, Yan-Hua He, Bei-Xuan Gao, Yue Guo, Mei-Li Expression Patterns of Three UGT Genes in Different Chemotype Safflower Lines and under MeJA Stimulus Revealed Their Potential Role in Flavonoid Biosynthesis |
title | Expression Patterns of Three UGT Genes in Different Chemotype Safflower Lines and under MeJA Stimulus Revealed Their Potential Role in Flavonoid Biosynthesis |
title_full | Expression Patterns of Three UGT Genes in Different Chemotype Safflower Lines and under MeJA Stimulus Revealed Their Potential Role in Flavonoid Biosynthesis |
title_fullStr | Expression Patterns of Three UGT Genes in Different Chemotype Safflower Lines and under MeJA Stimulus Revealed Their Potential Role in Flavonoid Biosynthesis |
title_full_unstemmed | Expression Patterns of Three UGT Genes in Different Chemotype Safflower Lines and under MeJA Stimulus Revealed Their Potential Role in Flavonoid Biosynthesis |
title_short | Expression Patterns of Three UGT Genes in Different Chemotype Safflower Lines and under MeJA Stimulus Revealed Their Potential Role in Flavonoid Biosynthesis |
title_sort | expression patterns of three ugt genes in different chemotype safflower lines and under meja stimulus revealed their potential role in flavonoid biosynthesis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938162/ https://www.ncbi.nlm.nih.gov/pubmed/27391785 http://dx.doi.org/10.1371/journal.pone.0158159 |
work_keys_str_mv | AT guodandan expressionpatternsofthreeugtgenesindifferentchemotypesafflowerlinesandundermejastimulusrevealedtheirpotentialroleinflavonoidbiosynthesis AT liufei expressionpatternsofthreeugtgenesindifferentchemotypesafflowerlinesandundermejastimulusrevealedtheirpotentialroleinflavonoidbiosynthesis AT tuyanhua expressionpatternsofthreeugtgenesindifferentchemotypesafflowerlinesandundermejastimulusrevealedtheirpotentialroleinflavonoidbiosynthesis AT hebeixuan expressionpatternsofthreeugtgenesindifferentchemotypesafflowerlinesandundermejastimulusrevealedtheirpotentialroleinflavonoidbiosynthesis AT gaoyue expressionpatternsofthreeugtgenesindifferentchemotypesafflowerlinesandundermejastimulusrevealedtheirpotentialroleinflavonoidbiosynthesis AT guomeili expressionpatternsofthreeugtgenesindifferentchemotypesafflowerlinesandundermejastimulusrevealedtheirpotentialroleinflavonoidbiosynthesis |