Cargando…
Predictive performance of BI-RADS magnetic resonance imaging descriptors in the context of suspicious (category 4) findings
OBJECTIVE: To determine the positive predictive value (PPV) and likelihood ratio for magnetic resonance imaging (MRI) characteristics of category 4 lesions, as described in the Breast Imaging Reporting and Data System (BI-RADS(®)) lexicon, as well as to test the predictive performance of the descrip...
Autores principales: | de Almeida, João Ricardo Maltez, Gomes, André Boechat, Barros, Thomas Pitangueiras, Fahel, Paulo Eduardo, Rocha, Mário de Seixas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Colégio Brasileiro de Radiologia e Diagnóstico por
Imagem
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938442/ https://www.ncbi.nlm.nih.gov/pubmed/27403012 http://dx.doi.org/10.1590/0100-3984.2015.0021 |
Ejemplares similares
-
Diffusion-weighted imaging of suspicious (BI-RADS 4) breast lesions:
stratification based on histopathology
por: de Almeida, João Ricardo Maltez, et al.
Publicado: (2017) -
Subcategorization of suspicious non-mass-like enhancement lesions(BI-RADS-MRI Category4)
por: Liu, Dandan, et al.
Publicado: (2023) -
A Machine Learning Ensemble Based on Radiomics to Predict BI-RADS Category and Reduce the Biopsy Rate of Ultrasound-Detected Suspicious Breast Masses
por: Interlenghi, Matteo, et al.
Publicado: (2022) -
CEUS Helps to Rerate Small Breast Tumors of BI-RADS Category 3 and Category 4
por: Zhang, Jian-xing, et al.
Publicado: (2014) -
Subdividing BI-RADS category 4 breast lesions observed on magnetic
resonance imaging: Is it feasible?
por: Bitencourt, Almir Galvão Vieira
Publicado: (2016)