Cargando…
Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs
Drosophila larval crawling is an attractive system to study rhythmic motor output at the level of animal behavior. Larval crawling consists of waves of muscle contractions generating forward or reverse locomotion. In addition, larvae undergo additional behaviors, including head casts, turning, and f...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938655/ https://www.ncbi.nlm.nih.gov/pubmed/27172197 http://dx.doi.org/10.1534/g3.116.028472 |
_version_ | 1782441900165300224 |
---|---|
author | Clark, Matt Q. McCumsey, Stephanie J. Lopez-Darwin, Sereno Heckscher, Ellie S. Doe, Chris Q. |
author_facet | Clark, Matt Q. McCumsey, Stephanie J. Lopez-Darwin, Sereno Heckscher, Ellie S. Doe, Chris Q. |
author_sort | Clark, Matt Q. |
collection | PubMed |
description | Drosophila larval crawling is an attractive system to study rhythmic motor output at the level of animal behavior. Larval crawling consists of waves of muscle contractions generating forward or reverse locomotion. In addition, larvae undergo additional behaviors, including head casts, turning, and feeding. It is likely that some neurons (e.g., motor neurons) are used in all these behaviors, but the identity (or even existence) of neurons dedicated to specific aspects of behavior is unclear. To identify neurons that regulate specific aspects of larval locomotion, we performed a genetic screen to identify neurons that, when activated, could elicit distinct motor programs. We used 165 Janelia CRM-Gal4 lines—chosen for sparse neuronal expression—to ectopically express the warmth-inducible neuronal activator TrpA1, and screened for locomotor defects. The primary screen measured forward locomotion velocity, and we identified 63 lines that had locomotion velocities significantly slower than controls following TrpA1 activation (28°). A secondary screen was performed on these lines, revealing multiple discrete behavioral phenotypes, including slow forward locomotion, excessive reverse locomotion, excessive turning, excessive feeding, immobile, rigid paralysis, and delayed paralysis. While many of the Gal4 lines had motor, sensory, or muscle expression that may account for some or all of the phenotype, some lines showed specific expression in a sparse pattern of interneurons. Our results show that distinct motor programs utilize distinct subsets of interneurons, and provide an entry point for characterizing interneurons governing different elements of the larval motor program. |
format | Online Article Text |
id | pubmed-4938655 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Genetics Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-49386552016-07-19 Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs Clark, Matt Q. McCumsey, Stephanie J. Lopez-Darwin, Sereno Heckscher, Ellie S. Doe, Chris Q. G3 (Bethesda) Investigations Drosophila larval crawling is an attractive system to study rhythmic motor output at the level of animal behavior. Larval crawling consists of waves of muscle contractions generating forward or reverse locomotion. In addition, larvae undergo additional behaviors, including head casts, turning, and feeding. It is likely that some neurons (e.g., motor neurons) are used in all these behaviors, but the identity (or even existence) of neurons dedicated to specific aspects of behavior is unclear. To identify neurons that regulate specific aspects of larval locomotion, we performed a genetic screen to identify neurons that, when activated, could elicit distinct motor programs. We used 165 Janelia CRM-Gal4 lines—chosen for sparse neuronal expression—to ectopically express the warmth-inducible neuronal activator TrpA1, and screened for locomotor defects. The primary screen measured forward locomotion velocity, and we identified 63 lines that had locomotion velocities significantly slower than controls following TrpA1 activation (28°). A secondary screen was performed on these lines, revealing multiple discrete behavioral phenotypes, including slow forward locomotion, excessive reverse locomotion, excessive turning, excessive feeding, immobile, rigid paralysis, and delayed paralysis. While many of the Gal4 lines had motor, sensory, or muscle expression that may account for some or all of the phenotype, some lines showed specific expression in a sparse pattern of interneurons. Our results show that distinct motor programs utilize distinct subsets of interneurons, and provide an entry point for characterizing interneurons governing different elements of the larval motor program. Genetics Society of America 2016-05-06 /pmc/articles/PMC4938655/ /pubmed/27172197 http://dx.doi.org/10.1534/g3.116.028472 Text en Copyright © 2016 Clark et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Investigations Clark, Matt Q. McCumsey, Stephanie J. Lopez-Darwin, Sereno Heckscher, Ellie S. Doe, Chris Q. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs |
title | Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs |
title_full | Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs |
title_fullStr | Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs |
title_full_unstemmed | Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs |
title_short | Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs |
title_sort | functional genetic screen to identify interneurons governing behaviorally distinct aspects of drosophila larval motor programs |
topic | Investigations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938655/ https://www.ncbi.nlm.nih.gov/pubmed/27172197 http://dx.doi.org/10.1534/g3.116.028472 |
work_keys_str_mv | AT clarkmattq functionalgeneticscreentoidentifyinterneuronsgoverningbehaviorallydistinctaspectsofdrosophilalarvalmotorprograms AT mccumseystephaniej functionalgeneticscreentoidentifyinterneuronsgoverningbehaviorallydistinctaspectsofdrosophilalarvalmotorprograms AT lopezdarwinsereno functionalgeneticscreentoidentifyinterneuronsgoverningbehaviorallydistinctaspectsofdrosophilalarvalmotorprograms AT heckscherellies functionalgeneticscreentoidentifyinterneuronsgoverningbehaviorallydistinctaspectsofdrosophilalarvalmotorprograms AT doechrisq functionalgeneticscreentoidentifyinterneuronsgoverningbehaviorallydistinctaspectsofdrosophilalarvalmotorprograms |