Cargando…

mCAL: A New Approach for Versatile Multiplex Action of Cas9 Using One sgRNA and Loci Flanked by a Programmed Target Sequence

Genome editing exploiting CRISPR/Cas9 has been adopted widely in academia and in the biotechnology industry to manipulate DNA sequences in diverse organisms. Molecular engineering of Cas9 itself and its guide RNA, and the strategies for using them, have increased efficiency, optimized specificity, r...

Descripción completa

Detalles Bibliográficos
Autores principales: Finnigan, Gregory C., Thorner, Jeremy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938667/
https://www.ncbi.nlm.nih.gov/pubmed/27185399
http://dx.doi.org/10.1534/g3.116.029801
Descripción
Sumario:Genome editing exploiting CRISPR/Cas9 has been adopted widely in academia and in the biotechnology industry to manipulate DNA sequences in diverse organisms. Molecular engineering of Cas9 itself and its guide RNA, and the strategies for using them, have increased efficiency, optimized specificity, reduced inappropriate off-target effects, and introduced modifications for performing other functions (transcriptional regulation, high-resolution imaging, protein recruitment, and high-throughput screening). Moreover, Cas9 has the ability to multiplex, i.e., to act at different genomic targets within the same nucleus. Currently, however, introducing concurrent changes at multiple loci involves: (i) identification of appropriate genomic sites, especially the availability of suitable PAM sequences; (ii) the design, construction, and expression of multiple sgRNA directed against those sites; (iii) potential difficulties in altering essential genes; and (iv) lingering concerns about “off-target” effects. We have devised a new approach that circumvents these drawbacks, as we demonstrate here using the yeast Saccharomyces cerevisiae. First, any gene(s) of interest are flanked upstream and downstream with a single unique target sequence that does not normally exist in the genome. Thereafter, expression of one sgRNA and cotransformation with appropriate PCR fragments permits concomitant Cas9-mediated alteration of multiple genes (both essential and nonessential). The system we developed also allows for maintenance of the integrated, inducible Cas9-expression cassette or its simultaneous scarless excision. Our scheme—dubbed mCAL for “Multiplexing of Cas9 at Artificial Loci”—can be applied to any organism in which the CRISPR/Cas9 methodology is currently being utilized. In principle, it can be applied to install synthetic sequences into the genome, to generate genomic libraries, and to program strains or cell lines so that they can be conveniently (and repeatedly) manipulated at multiple loci with extremely high efficiency.