Cargando…

ZiBu PiYin recipe prevents diabetes-associated cognitive decline in rats: possible involvement of ameliorating mitochondrial dysfunction, insulin resistance pathway and histopathological changes

BACKGROUND: Disturbance in energy metabolism, as a key factor in diabetes-associated cognitive decline (DACD), has become a promising therapeutic target of Chinese medicine ZiBu PiYin Recipe (ZBPYR). However, it is still not clear how ZBPYR affects the mitochondrial function in DACD rats’ brains, wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Zheng, Zhan, Libin, Liang, Lina, Sui, Hua, Zheng, Luping, Sun, Xiaoxin, Xie, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938951/
https://www.ncbi.nlm.nih.gov/pubmed/27393392
http://dx.doi.org/10.1186/s12906-016-1177-y
Descripción
Sumario:BACKGROUND: Disturbance in energy metabolism, as a key factor in diabetes-associated cognitive decline (DACD), has become a promising therapeutic target of Chinese medicine ZiBu PiYin Recipe (ZBPYR). However, it is still not clear how ZBPYR affects the mitochondrial function in DACD rats’ brains, which is considered as the crucial cell organelle to supply energy for the brain. METHODS: Type 2 diabetes mellitus (T2DM) rat models were established by using high fat diet and streptozotocin (STZ) (30 mg/kg, ip). The evaluation of insulin sensitivity was performed by oral glucose tolerance and insulin tolerance test. After 7 weeks, the T2DM rats were treated with vehicle or ZBPYR for 11 weeks and morris water maze (MWM) test were used to evaluate memory function. The ultra structural changes of prefrontal cortex (PFC) and hippocampus were examined by transmission electron microscopy (TEM). The mitochondrial membrane potential (ΔΨm) and reactive oxygen species (ROS) were measured with JC-1 and DCFDA assay. The levels of insulin proteins were quantified by Western Blot analysis and the markers of histopathological changes were detected by immunohistochemistry. RESULTS: ZBPYR could alleviate learning and memory impairment of DACD rats. TEM showed that ZBPYR prevented mitochondrial ultra-structural alterations and number changes in the PFC and hippocampus of the DACD rats. In addition, ZBPYR significantly increased ΔΨm and lowered the levels of ROS. Further investigation indicated that ZBPYR suppressed the release of cytochrome c from mitochondria, strengthened insulin signaling and inhibited GSK3β over-expression. These positive effects were associated with reduced Aβ(1-42) deposition and restored expression levels of microtubule-associated protein MAP2. CONCLUSION: ZBPYR showed excellent protective effect against DACD via ameliorating mitochondrial dysfunction, insulin resistance and histopathological changes.