Cargando…

Circulating microRNAs as biomarkers for rituximab therapy, in neuromyelitis optica (NMO)

BACKGROUND: Neuromyelitis optica (NMO) is a chronic autoimmune disease of the central nervous system (CNS). The main immunological feature of the disease is the presence of autoantibodies to Aquaporin 4 (AQP4+), identified in about 82 % of cases. Currently, there are no reliable biomarkers for monit...

Descripción completa

Detalles Bibliográficos
Autores principales: Vaknin-Dembinsky, Adi, Charbit, Hanna, Brill, Livnat, Abramsky, Oded, Gur-Wahnon, Devorah, Ben-Dov, Iddo Z., Lavon, Iris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939003/
https://www.ncbi.nlm.nih.gov/pubmed/27393339
http://dx.doi.org/10.1186/s12974-016-0648-x
Descripción
Sumario:BACKGROUND: Neuromyelitis optica (NMO) is a chronic autoimmune disease of the central nervous system (CNS). The main immunological feature of the disease is the presence of autoantibodies to Aquaporin 4 (AQP4+), identified in about 82 % of cases. Currently, there are no reliable biomarkers for monitoring treatment response in patients with NMO. In an effort to identify biomarkers, we analyzed microRNAs (miRNAs) in the blood of rituximab-treated NMO patients before and after therapy. METHODS: Total RNA extracted from whole blood of nine rituximab-responsive NMO patients before and 6 months following treatment was subjected to small RNAseq analysis. The study included an additional group of seven untreated AQP4+ seropositive NMO patients and 15 healthy controls (HCs). RESULTS: Fourteen miRNAs were up regulated and 32 were downregulated significantly in the blood of NMO patients following effective therapy with rituximab (all p < 0.05). Furthermore, we show that expression of 17 miRNAs was significantly higher and of 25 miRNAs was significantly lower in untreated NMO patients compared with HCs (all p < 0.05). Following rituximab treatment, the expression levels of 10 of the 17 miRNAs that show increased expression in NMO reverted to the levels seen in HCs. Six of these “normalized” miRNAs are known as brain-specific/enriched miRNAs. CONCLUSIONS: Specific miRNA signatures in whole blood of patients with NMO might serve as biomarkers for therapy response. Furthermore, monitoring the levels of brain-specific/enriched miRNAs in the blood might reflect the degree of disease activity in the CNS of inflammatory demyelinating disorders. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12974-016-0648-x) contains supplementary material, which is available to authorized users.