Cargando…

Influence of Calcium Phosphate and Apatite Containing Products on Enamel Erosion

For the purpose of erosion prevention the present study aimed to compare the efficacy of two biomimetic products and a fluoride solution to optimize the protective properties of the pellicle. After 1 min of in situ pellicle formation on bovine enamel slabs, 8 subjects adopted CPP-ACP (GC Tooth Mouss...

Descripción completa

Detalles Bibliográficos
Autores principales: Kensche, A., Pötschke, S., Hannig, C., Richter, G., Hoth-Hannig, W., Hannig, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939184/
https://www.ncbi.nlm.nih.gov/pubmed/27430013
http://dx.doi.org/10.1155/2016/7959273
_version_ 1782441967813132288
author Kensche, A.
Pötschke, S.
Hannig, C.
Richter, G.
Hoth-Hannig, W.
Hannig, M.
author_facet Kensche, A.
Pötschke, S.
Hannig, C.
Richter, G.
Hoth-Hannig, W.
Hannig, M.
author_sort Kensche, A.
collection PubMed
description For the purpose of erosion prevention the present study aimed to compare the efficacy of two biomimetic products and a fluoride solution to optimize the protective properties of the pellicle. After 1 min of in situ pellicle formation on bovine enamel slabs, 8 subjects adopted CPP-ACP (GC Tooth Mousse), a mouthwash with hydroxyapatite microclusters (Biorepair), or a fluoride based mouthwash (elmex Kariesschutz) for 1 min each. Afterwards, samples were exposed in the oral cavity for 28 min. Native enamel slabs and slabs exposed to the oral cavity for 30 min without any rinse served as controls. After oral exposure, slabs were incubated in HCl (pH values 2, 2.3, and 3) for 120 s and kinetics of calcium and phosphate release were measured photometrically; representative samples were evaluated by SEM and TEM. The physiological pellicle reduced demineralization at all pH values; the protective effect was enhanced by fluoride. The biomimetic materials also reduced ion release but their effect was less pronounced. SEM indicated no layer formation after use of the different products. However, TEM confirmed the potential accumulation of mineral components at the pellicle surface. The tested products improve the protective properties of the in situ pellicle but not as effectively as fluorides.
format Online
Article
Text
id pubmed-4939184
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-49391842016-07-17 Influence of Calcium Phosphate and Apatite Containing Products on Enamel Erosion Kensche, A. Pötschke, S. Hannig, C. Richter, G. Hoth-Hannig, W. Hannig, M. ScientificWorldJournal Clinical Study For the purpose of erosion prevention the present study aimed to compare the efficacy of two biomimetic products and a fluoride solution to optimize the protective properties of the pellicle. After 1 min of in situ pellicle formation on bovine enamel slabs, 8 subjects adopted CPP-ACP (GC Tooth Mousse), a mouthwash with hydroxyapatite microclusters (Biorepair), or a fluoride based mouthwash (elmex Kariesschutz) for 1 min each. Afterwards, samples were exposed in the oral cavity for 28 min. Native enamel slabs and slabs exposed to the oral cavity for 30 min without any rinse served as controls. After oral exposure, slabs were incubated in HCl (pH values 2, 2.3, and 3) for 120 s and kinetics of calcium and phosphate release were measured photometrically; representative samples were evaluated by SEM and TEM. The physiological pellicle reduced demineralization at all pH values; the protective effect was enhanced by fluoride. The biomimetic materials also reduced ion release but their effect was less pronounced. SEM indicated no layer formation after use of the different products. However, TEM confirmed the potential accumulation of mineral components at the pellicle surface. The tested products improve the protective properties of the in situ pellicle but not as effectively as fluorides. Hindawi Publishing Corporation 2016 2016-06-26 /pmc/articles/PMC4939184/ /pubmed/27430013 http://dx.doi.org/10.1155/2016/7959273 Text en Copyright © 2016 A. Kensche et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Clinical Study
Kensche, A.
Pötschke, S.
Hannig, C.
Richter, G.
Hoth-Hannig, W.
Hannig, M.
Influence of Calcium Phosphate and Apatite Containing Products on Enamel Erosion
title Influence of Calcium Phosphate and Apatite Containing Products on Enamel Erosion
title_full Influence of Calcium Phosphate and Apatite Containing Products on Enamel Erosion
title_fullStr Influence of Calcium Phosphate and Apatite Containing Products on Enamel Erosion
title_full_unstemmed Influence of Calcium Phosphate and Apatite Containing Products on Enamel Erosion
title_short Influence of Calcium Phosphate and Apatite Containing Products on Enamel Erosion
title_sort influence of calcium phosphate and apatite containing products on enamel erosion
topic Clinical Study
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939184/
https://www.ncbi.nlm.nih.gov/pubmed/27430013
http://dx.doi.org/10.1155/2016/7959273
work_keys_str_mv AT kenschea influenceofcalciumphosphateandapatitecontainingproductsonenamelerosion
AT potschkes influenceofcalciumphosphateandapatitecontainingproductsonenamelerosion
AT hannigc influenceofcalciumphosphateandapatitecontainingproductsonenamelerosion
AT richterg influenceofcalciumphosphateandapatitecontainingproductsonenamelerosion
AT hothhannigw influenceofcalciumphosphateandapatitecontainingproductsonenamelerosion
AT hannigm influenceofcalciumphosphateandapatitecontainingproductsonenamelerosion