Cargando…

Proteomic data set of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates

Sulfurospirillum multivorans is a free-living, physiologically versatile Epsilonproteobacterium able to couple the reductive dehalogenation of chlorinated and brominated ethenes to growth (organohalide respiration). We present proteomic data of S. multivorans grown with different electron donors (fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Goris, Tobias, Schiffmann, Christian L., Gadkari, Jennifer, Adrian, Lorenz, von Bergen, Martin, Diekert, Gabriele, Jehmlich, Nico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939420/
https://www.ncbi.nlm.nih.gov/pubmed/27437436
http://dx.doi.org/10.1016/j.dib.2016.06.022
Descripción
Sumario:Sulfurospirillum multivorans is a free-living, physiologically versatile Epsilonproteobacterium able to couple the reductive dehalogenation of chlorinated and brominated ethenes to growth (organohalide respiration). We present proteomic data of S. multivorans grown with different electron donors (formate or pyruvate) and electron acceptors (fumarate, nitrate, or tetrachloroethene [PCE]). To obtain information on the cellular localization of proteins, membrane extracts and soluble fractions were separated before data collection from both fractions. The proteome analysis of S. multivorans was performed by mass spectrometry (nanoLC-MS/MS). Raw data have been deposited at ProteomeXchange, “ProteomeXchange provides globally coordinated proteomics data submission and dissemination” [1], via the PRIDE partner repository with the dataset identifier PRIDE: PXD004011. The data might support further research in organohalide respiration and in the general metabolism of free-living Epsilonproteobacteria. The dataset is associated with a previously published study “Proteomics of the organohalide-respiring Epsilonproteobacterium S. multivorans adapted to tetrachloroethene and other energy substrates” [2].