Cargando…
Evaluation of different time domain peak models using extreme learning machine-based peak detection for EEG signal
Various peak models have been introduced to detect and analyze peaks in the time domain analysis of electroencephalogram (EEG) signals. In general, peak model in the time domain analysis consists of a set of signal parameters, such as amplitude, width, and slope. Models including those proposed by D...
Autores principales: | Adam, Asrul, Ibrahim, Zuwairie, Mokhtar, Norrima, Shapiai, Mohd Ibrahim, Cumming, Paul, Mubin, Marizan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4940316/ https://www.ncbi.nlm.nih.gov/pubmed/27462484 http://dx.doi.org/10.1186/s40064-016-2697-0 |
Ejemplares similares
-
Feature selection using angle modulated simulated Kalman filter for peak classification of EEG signals
por: Adam, Asrul, et al.
Publicado: (2016) -
Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization
por: Adam, Asrul, et al.
Publicado: (2014) -
Improving Vector Evaluated Particle Swarm Optimisation Using Multiple Nondominated Leaders
por: Lim, Kian Sheng, et al.
Publicado: (2014) -
PeakBot: machine-learning-based chromatographic peak picking
por: Bueschl, Christoph, et al.
Publicado: (2022) -
Improving Vector Evaluated Particle Swarm Optimisation by Incorporating Nondominated Solutions
por: Lim, Kian Sheng, et al.
Publicado: (2013)