Cargando…

Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds

A number of marine organisms use muscle-controlled surface structures to achieve rapid changes in colour and transparency with outstanding reversibility. Inspired by these display tactics, we develop analogous deformation-controlled surface-engineering approaches via strain-dependent cracks and fold...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Songshan, Zhang, Dianyun, Huang, Wenhan, Wang, Zhaofeng, Freire, Stephan G., Yu, Xiaoyuan, Smith, Andrew T., Huang, Emily Y., Nguon, Helen, Sun, Luyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941047/
https://www.ncbi.nlm.nih.gov/pubmed/27389480
http://dx.doi.org/10.1038/ncomms11802
Descripción
Sumario:A number of marine organisms use muscle-controlled surface structures to achieve rapid changes in colour and transparency with outstanding reversibility. Inspired by these display tactics, we develop analogous deformation-controlled surface-engineering approaches via strain-dependent cracks and folds to realize the following four mechanochromic devices: (1) transparency change mechanochromism (TCM), (2) luminescent mechanochromism (LM), (3) colour alteration mechanochromism (CAM) and (4) encryption mechanochromism (EM). These devices are based on a simple bilayer system that exhibits a broad range of mechanochromic behaviours with high sensitivity and reversibility. The TCM device can reversibly switch between transparent and opaque states. The LM can emit intensive fluorescence as stretched with very high strain sensitivity. The CAM can turn fluorescence from green to yellow to orange as stretched within 20% strain. The EM device can reversibly reveal and conceal any desirable patterns.