Cargando…

miR-155-5p inhibition promotes the transition of bone marrow mesenchymal stem cells to gastric cancer tissue derived MSC-like cells via NF-κB p65 activation

Gastric cancer tissue-derived MSC-like cells (GC-MSC) share similar characteristics to bone marrow MSC (BM-MSC); however, the phenotypical and functional differences and the molecular mechanism of transition between the two cell types remain unclear. Compared to BM-MSC, GC-MSC exhibited the classic...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Mengchu, Wang, Mei, Yang, Fang, Tian, Yiqing, Cai, Jie, Yang, Huan, Fu, Hailong, Mao, Fei, Zhu, Wei, Qian, Hui, Xu, Wenrong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941335/
https://www.ncbi.nlm.nih.gov/pubmed/26934326
http://dx.doi.org/10.18632/oncotarget.7767
Descripción
Sumario:Gastric cancer tissue-derived MSC-like cells (GC-MSC) share similar characteristics to bone marrow MSC (BM-MSC); however, the phenotypical and functional differences and the molecular mechanism of transition between the two cell types remain unclear. Compared to BM-MSC, GC-MSC exhibited the classic phenotype of reactive stroma cells, a stronger gastric cancer promoting capacity and lower expression of miR-155-5p. Inhibition of miR-155-5p by transfecting miRNA inhibitor induced a phenotypical and functional transition of BM-MSC into GC-MSC-like cells, and the reverse experiment deprived GC-MSC of tumor-promoting phenotype and function. NF-kappa B p65 (NF-κB p65) and inhibitor of NF-kappa B kinase subunit epsilon (IKBKE/IKKε) were identified as targets of miR-155-5p and important for miRNA inhibitor activating NF-κB p65 in the transition. Inactivation of NF-κB by pyrrolidine dithiocarbamic acid (PDTC) significantly blocked the effect of miR-155-5p inhibitor on BM-MSC. IKBKE, NF-κB p65 and phospho-NF-κB p65 proteins were highly enriched in MSC-like cells of gastric cancer tissues, and the latter two were correlated with the pathological progression of gastric cancer. In GC-MSC, the expression of miR-155-5p was downregulated and NF-κB p65 protein was increased and activated. NF-κB inactivation by PDTC or knockdown of its downstream cytokines reversed the phenotype and function of GC-MSC. Taken together, our findings revealed that miR-155-5p downregulation induces BM-MSC to acquire a GC-MSC-like phenotype and function depending on NF-κB p65 activation, which suggests a novel mechanism underlying the cancer associated MSC remodeling in the tumor microenvironment and offers an effective target and approach for gastric cancer therapy.