Cargando…
APE1-mediated DNA damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts
Chronic Gastroesophageal Reflux Disease (GERD) is the main risk factor for the development of Barrett's esophagus (BE) and its progression to esophageal adenocarcinoma (EAC). Accordingly, EAC cells are subjected to high levels of oxidative stress and subsequent DNA damage. In this study, we inv...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941344/ https://www.ncbi.nlm.nih.gov/pubmed/26934647 http://dx.doi.org/10.18632/oncotarget.7696 |
_version_ | 1782442290766151680 |
---|---|
author | Hong, Jun Chen, Zheng Peng, Dunfa Zaika, Alexander Revetta, Frank Washington, M. Kay Belkhiri, Abbes El-Rifai, Wael |
author_facet | Hong, Jun Chen, Zheng Peng, Dunfa Zaika, Alexander Revetta, Frank Washington, M. Kay Belkhiri, Abbes El-Rifai, Wael |
author_sort | Hong, Jun |
collection | PubMed |
description | Chronic Gastroesophageal Reflux Disease (GERD) is the main risk factor for the development of Barrett's esophagus (BE) and its progression to esophageal adenocarcinoma (EAC). Accordingly, EAC cells are subjected to high levels of oxidative stress and subsequent DNA damage. In this study, we investigated the expression and role of Apurinic/apyrimidinic endonuclease 1 (APE1) protein in promoting cancer cell survival by counteracting the lethal effects of acidic bile salts (ABS)-induced DNA damage. Immunohistochemistry analysis of human tissue samples demonstrated overexpression of APE1 in more than half of EACs (70 of 130), as compared to normal esophagus and non-dysplastic BE samples (P < 0.01). To mimic in vivo conditions, we treated in vitro cell models with a cocktail of ABS. The knockdown of endogenous APE1 in EAC FLO-1 cells significantly increased oxidative DNA damage (P < 0.01) and DNA single- and double-strand breaks (P < 0.01), whereas overexpression of APE1 in EAC OE33 cells reversed these effects. Annexin V/PI staining indicated that the APE1 expression in OE33 cells protects against ABS-induced apoptosis. In contrast, knockdown of endogenous APE1 in FLO-1 cells increased apoptosis under the same conditions. Mechanistic investigations indicated that the pro-survival function of APE1 was associated with the regulation of stress response c-Jun N-terminal protein kinase (JNK) and p38 kinases. Pharmacological inhibition of APE1 base excision repair (BER) function decreased cell survival and enhanced activation of JNK and p38 kinases by ABS. Our findings suggest that constitutive overexpression of APE1 in EAC may be an adaptive pro-survival mechanism that protects against the genotoxic lethal effects of bile reflux episodes. |
format | Online Article Text |
id | pubmed-4941344 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-49413442016-07-19 APE1-mediated DNA damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts Hong, Jun Chen, Zheng Peng, Dunfa Zaika, Alexander Revetta, Frank Washington, M. Kay Belkhiri, Abbes El-Rifai, Wael Oncotarget Research Paper Chronic Gastroesophageal Reflux Disease (GERD) is the main risk factor for the development of Barrett's esophagus (BE) and its progression to esophageal adenocarcinoma (EAC). Accordingly, EAC cells are subjected to high levels of oxidative stress and subsequent DNA damage. In this study, we investigated the expression and role of Apurinic/apyrimidinic endonuclease 1 (APE1) protein in promoting cancer cell survival by counteracting the lethal effects of acidic bile salts (ABS)-induced DNA damage. Immunohistochemistry analysis of human tissue samples demonstrated overexpression of APE1 in more than half of EACs (70 of 130), as compared to normal esophagus and non-dysplastic BE samples (P < 0.01). To mimic in vivo conditions, we treated in vitro cell models with a cocktail of ABS. The knockdown of endogenous APE1 in EAC FLO-1 cells significantly increased oxidative DNA damage (P < 0.01) and DNA single- and double-strand breaks (P < 0.01), whereas overexpression of APE1 in EAC OE33 cells reversed these effects. Annexin V/PI staining indicated that the APE1 expression in OE33 cells protects against ABS-induced apoptosis. In contrast, knockdown of endogenous APE1 in FLO-1 cells increased apoptosis under the same conditions. Mechanistic investigations indicated that the pro-survival function of APE1 was associated with the regulation of stress response c-Jun N-terminal protein kinase (JNK) and p38 kinases. Pharmacological inhibition of APE1 base excision repair (BER) function decreased cell survival and enhanced activation of JNK and p38 kinases by ABS. Our findings suggest that constitutive overexpression of APE1 in EAC may be an adaptive pro-survival mechanism that protects against the genotoxic lethal effects of bile reflux episodes. Impact Journals LLC 2016-02-25 /pmc/articles/PMC4941344/ /pubmed/26934647 http://dx.doi.org/10.18632/oncotarget.7696 Text en Copyright: © 2016 Hong et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Hong, Jun Chen, Zheng Peng, Dunfa Zaika, Alexander Revetta, Frank Washington, M. Kay Belkhiri, Abbes El-Rifai, Wael APE1-mediated DNA damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts |
title | APE1-mediated DNA damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts |
title_full | APE1-mediated DNA damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts |
title_fullStr | APE1-mediated DNA damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts |
title_full_unstemmed | APE1-mediated DNA damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts |
title_short | APE1-mediated DNA damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts |
title_sort | ape1-mediated dna damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941344/ https://www.ncbi.nlm.nih.gov/pubmed/26934647 http://dx.doi.org/10.18632/oncotarget.7696 |
work_keys_str_mv | AT hongjun ape1mediateddnadamagerepairprovidessurvivaladvantageforesophagealadenocarcinomacellsinresponsetoacidicbilesalts AT chenzheng ape1mediateddnadamagerepairprovidessurvivaladvantageforesophagealadenocarcinomacellsinresponsetoacidicbilesalts AT pengdunfa ape1mediateddnadamagerepairprovidessurvivaladvantageforesophagealadenocarcinomacellsinresponsetoacidicbilesalts AT zaikaalexander ape1mediateddnadamagerepairprovidessurvivaladvantageforesophagealadenocarcinomacellsinresponsetoacidicbilesalts AT revettafrank ape1mediateddnadamagerepairprovidessurvivaladvantageforesophagealadenocarcinomacellsinresponsetoacidicbilesalts AT washingtonmkay ape1mediateddnadamagerepairprovidessurvivaladvantageforesophagealadenocarcinomacellsinresponsetoacidicbilesalts AT belkhiriabbes ape1mediateddnadamagerepairprovidessurvivaladvantageforesophagealadenocarcinomacellsinresponsetoacidicbilesalts AT elrifaiwael ape1mediateddnadamagerepairprovidessurvivaladvantageforesophagealadenocarcinomacellsinresponsetoacidicbilesalts |