Cargando…

Otosclerosis Associated with a De Novo Mutation −832G > A in the TGFB1 Gene Promoter Causing a Decreased Expression Level

Otosclerosis (OTSC) is defined by abnormal bone remodeling in the otic capsule of middle ear which leads to conductive hearing loss. In our previous study, we have identified a de novo heterozygous mutation −832G > A in the promoter of TGFB1 in an otosclerosis patient. In the present study, we pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Priyadarshi, Saurabh, Hansdah, Kirtal, Ray, Chinmay Sundar, Biswal, Narayan Chandra, Ramchander, Puppala Venkat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941736/
https://www.ncbi.nlm.nih.gov/pubmed/27404893
http://dx.doi.org/10.1038/srep29572
Descripción
Sumario:Otosclerosis (OTSC) is defined by abnormal bone remodeling in the otic capsule of middle ear which leads to conductive hearing loss. In our previous study, we have identified a de novo heterozygous mutation −832G > A in the promoter of TGFB1 in an otosclerosis patient. In the present study, we progressively screened this mutation in a cohort of 254 cases and 262 controls. The family members of the patient positive for −832G > A variation were also screened and found inheritance of this variation only to her daughter. Interestingly, this variation is associated with a decreased level of the TGFB1 transcript in the patient compared to her parents and controls. In silico analysis of this mutation predicted the altered binding of two transcription factors v-Myb and MZF1 in the mutated promoter sequence. Further, functional analysis of this mutation using in vitro luciferase and electrophoretic mobility shift assays revealed that this variation is associated with decreased gene expression. In conclusion, this study established the fact that TGFB1 mutation −832G > A altered the TGFB1 promoter activity, which could affect the susceptibility to otosclerosis development. Further, systemic analysis of TGFB1 gene sequence and expression analysis of this gene might reveal its precise role in the pathogenesis of otosclerosis.