Cargando…
Establishing a Wild, Ex Situ Population of a Critically Endangered Shade-Tolerant Rainforest Conifer: A Translocation Experiment
Translocation can reduce extinction risk by increasing population size and geographic range, and is increasingly being used in the management of rare and threatened plant species. A critical determinant of successful plant establishment is light environment. Wollemia nobilis (Wollemi pine) is a crit...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942103/ https://www.ncbi.nlm.nih.gov/pubmed/27403527 http://dx.doi.org/10.1371/journal.pone.0157559 |
Sumario: | Translocation can reduce extinction risk by increasing population size and geographic range, and is increasingly being used in the management of rare and threatened plant species. A critical determinant of successful plant establishment is light environment. Wollemia nobilis (Wollemi pine) is a critically endangered conifer, with a wild population of 83 mature trees and a highly restricted distribution of less than 10 km(2). We used under-planting to establish a population of W. nobilis in a new rainforest site. Because its optimal establishment conditions were unknown, we conducted an experimental translocation, planting in a range of different light conditions from deeply shaded to high light gaps. Two years after the experimental translocation, 85% of plants had survived. There were two distinct responses: very high survival (94%) but very low growth, and lower survival (69%) and higher growth, associated with initial plant condition. Overall survival of translocated W. nobilis was strongly increased in planting sites with higher light, in contrast to previous studies demonstrating long-term survival of wild W. nobilis juveniles in deep shade. Translocation by under-planting may be useful in establishing new populations of shade-tolerant plant species, not least by utilizing the range of light conditions that occur in forest understories. |
---|