Cargando…
Free-form Light Actuators — Fabrication and Control of Actuation in Microscopic Scale
Liquid crystalline elastomers (LCEs) are smart materials capable of reversible shape-change in response to external stimuli, and have attracted researchers' attention in many fields. Most of the studies focused on macroscopic LCE structures (films, fibers) and their miniaturization is still in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MyJove Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942173/ https://www.ncbi.nlm.nih.gov/pubmed/27285398 http://dx.doi.org/10.3791/53744 |
_version_ | 1782442388159987712 |
---|---|
author | Zeng, Hao Wasylczyk, Piotr Parmeggiani, Camilla Martella, Daniele Wiersma, Diederik Sybolt |
author_facet | Zeng, Hao Wasylczyk, Piotr Parmeggiani, Camilla Martella, Daniele Wiersma, Diederik Sybolt |
author_sort | Zeng, Hao |
collection | PubMed |
description | Liquid crystalline elastomers (LCEs) are smart materials capable of reversible shape-change in response to external stimuli, and have attracted researchers' attention in many fields. Most of the studies focused on macroscopic LCE structures (films, fibers) and their miniaturization is still in its infancy. Recently developed lithography techniques, e.g., mask exposure and replica molding, only allow for creating 2D structures on LCE thin films. Direct laser writing (DLW) opens access to truly 3D fabrication in the microscopic scale. However, controlling the actuation topology and dynamics at the same length scale remains a challenge. In this paper we report on a method to control the liquid crystal (LC) molecular alignment in the LCE microstructures of arbitrary three-dimensional shape. This was made possible by a combination of direct laser writing for both the LCE structures as well as for micrograting patterns inducing local LC alignment. Several types of grating patterns were used to introduce different LC alignments, which can be subsequently patterned into the LCE structures. This protocol allows one to obtain LCE microstructures with engineered alignments able to perform multiple opto-mechanical actuation, thus being capable of multiple functionalities. Applications can be foreseen in the fields of tunable photonics, micro-robotics, lab-on-chip technology and others. |
format | Online Article Text |
id | pubmed-4942173 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MyJove Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-49421732016-07-22 Free-form Light Actuators — Fabrication and Control of Actuation in Microscopic Scale Zeng, Hao Wasylczyk, Piotr Parmeggiani, Camilla Martella, Daniele Wiersma, Diederik Sybolt J Vis Exp Engineering Liquid crystalline elastomers (LCEs) are smart materials capable of reversible shape-change in response to external stimuli, and have attracted researchers' attention in many fields. Most of the studies focused on macroscopic LCE structures (films, fibers) and their miniaturization is still in its infancy. Recently developed lithography techniques, e.g., mask exposure and replica molding, only allow for creating 2D structures on LCE thin films. Direct laser writing (DLW) opens access to truly 3D fabrication in the microscopic scale. However, controlling the actuation topology and dynamics at the same length scale remains a challenge. In this paper we report on a method to control the liquid crystal (LC) molecular alignment in the LCE microstructures of arbitrary three-dimensional shape. This was made possible by a combination of direct laser writing for both the LCE structures as well as for micrograting patterns inducing local LC alignment. Several types of grating patterns were used to introduce different LC alignments, which can be subsequently patterned into the LCE structures. This protocol allows one to obtain LCE microstructures with engineered alignments able to perform multiple opto-mechanical actuation, thus being capable of multiple functionalities. Applications can be foreseen in the fields of tunable photonics, micro-robotics, lab-on-chip technology and others. MyJove Corporation 2016-05-25 /pmc/articles/PMC4942173/ /pubmed/27285398 http://dx.doi.org/10.3791/53744 Text en Copyright © 2016, Journal of Visualized Experiments http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visithttp://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Engineering Zeng, Hao Wasylczyk, Piotr Parmeggiani, Camilla Martella, Daniele Wiersma, Diederik Sybolt Free-form Light Actuators — Fabrication and Control of Actuation in Microscopic Scale |
title | Free-form Light Actuators — Fabrication and Control of Actuation in Microscopic Scale |
title_full | Free-form Light Actuators — Fabrication and Control of Actuation in Microscopic Scale |
title_fullStr | Free-form Light Actuators — Fabrication and Control of Actuation in Microscopic Scale |
title_full_unstemmed | Free-form Light Actuators — Fabrication and Control of Actuation in Microscopic Scale |
title_short | Free-form Light Actuators — Fabrication and Control of Actuation in Microscopic Scale |
title_sort | free-form light actuators — fabrication and control of actuation in microscopic scale |
topic | Engineering |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942173/ https://www.ncbi.nlm.nih.gov/pubmed/27285398 http://dx.doi.org/10.3791/53744 |
work_keys_str_mv | AT zenghao freeformlightactuatorsfabricationandcontrolofactuationinmicroscopicscale AT wasylczykpiotr freeformlightactuatorsfabricationandcontrolofactuationinmicroscopicscale AT parmeggianicamilla freeformlightactuatorsfabricationandcontrolofactuationinmicroscopicscale AT martelladaniele freeformlightactuatorsfabricationandcontrolofactuationinmicroscopicscale AT wiersmadiederiksybolt freeformlightactuatorsfabricationandcontrolofactuationinmicroscopicscale |