Cargando…
The Indirect Effect of Age Group on Switch Costs via Gray Matter Volume and Task-Related Brain Activity
Healthy aging simultaneously affects brain structure, brain function, and cognition. These effects are often investigated in isolation ignoring any relationships between them. It is plausible that age related declines in cognitive performance are the result of age-related structural and functional c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942475/ https://www.ncbi.nlm.nih.gov/pubmed/27468265 http://dx.doi.org/10.3389/fnagi.2016.00162 |
_version_ | 1782442414835761152 |
---|---|
author | Steffener, Jason Gazes, Yunglin Habeck, Christian Stern, Yaakov |
author_facet | Steffener, Jason Gazes, Yunglin Habeck, Christian Stern, Yaakov |
author_sort | Steffener, Jason |
collection | PubMed |
description | Healthy aging simultaneously affects brain structure, brain function, and cognition. These effects are often investigated in isolation ignoring any relationships between them. It is plausible that age related declines in cognitive performance are the result of age-related structural and functional changes. This straightforward idea is tested in within a conceptual research model of cognitive aging. The current study tested whether age-related declines in task-performance were explained by age-related differences in brain structure and brain function using a task-switching paradigm in 175 participants. Sixty-three young and 112 old participants underwent MRI scanning of brain structure and brain activation. The experimental task was an executive context dual task with switch costs in response time as the behavioral measure. A serial mediation model was applied voxel-wise throughout the brain testing all pathways between age group, gray matter volume, brain activation and increased switch costs, worsening performance. There were widespread age group differences in gray matter volume and brain activation. Switch costs also significantly differed by age group. There were brain regions demonstrating significant indirect effects of age group on switch costs via the pathway through gray matter volume and brain activation. These were in the bilateral precuneus, bilateral parietal cortex, the left precentral gyrus, cerebellum, fusiform, and occipital cortices. There were also significant indirect effects via the brain activation pathway after controlling for gray matter volume. These effects were in the cerebellum, occipital cortex, left precentral gyrus, bilateral supramarginal, bilateral parietal, precuneus, middle cingulate extending to medial superior frontal gyri and the left middle frontal gyri. There were no significant effects through the gray matter volume alone pathway. These results demonstrate that a large proportion of the age group effect on switch costs can be attributed to individual differences in gray matter volume and brain activation. Therefore, age-related neural effects underlying cognitive control are a complex interaction between brain structure and function. Furthermore, the analyses demonstrate the feasibility of utilizing multiple neuroimaging modalities within a conceptual research model of cognitive aging. |
format | Online Article Text |
id | pubmed-4942475 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-49424752016-07-27 The Indirect Effect of Age Group on Switch Costs via Gray Matter Volume and Task-Related Brain Activity Steffener, Jason Gazes, Yunglin Habeck, Christian Stern, Yaakov Front Aging Neurosci Neuroscience Healthy aging simultaneously affects brain structure, brain function, and cognition. These effects are often investigated in isolation ignoring any relationships between them. It is plausible that age related declines in cognitive performance are the result of age-related structural and functional changes. This straightforward idea is tested in within a conceptual research model of cognitive aging. The current study tested whether age-related declines in task-performance were explained by age-related differences in brain structure and brain function using a task-switching paradigm in 175 participants. Sixty-three young and 112 old participants underwent MRI scanning of brain structure and brain activation. The experimental task was an executive context dual task with switch costs in response time as the behavioral measure. A serial mediation model was applied voxel-wise throughout the brain testing all pathways between age group, gray matter volume, brain activation and increased switch costs, worsening performance. There were widespread age group differences in gray matter volume and brain activation. Switch costs also significantly differed by age group. There were brain regions demonstrating significant indirect effects of age group on switch costs via the pathway through gray matter volume and brain activation. These were in the bilateral precuneus, bilateral parietal cortex, the left precentral gyrus, cerebellum, fusiform, and occipital cortices. There were also significant indirect effects via the brain activation pathway after controlling for gray matter volume. These effects were in the cerebellum, occipital cortex, left precentral gyrus, bilateral supramarginal, bilateral parietal, precuneus, middle cingulate extending to medial superior frontal gyri and the left middle frontal gyri. There were no significant effects through the gray matter volume alone pathway. These results demonstrate that a large proportion of the age group effect on switch costs can be attributed to individual differences in gray matter volume and brain activation. Therefore, age-related neural effects underlying cognitive control are a complex interaction between brain structure and function. Furthermore, the analyses demonstrate the feasibility of utilizing multiple neuroimaging modalities within a conceptual research model of cognitive aging. Frontiers Media S.A. 2016-07-13 /pmc/articles/PMC4942475/ /pubmed/27468265 http://dx.doi.org/10.3389/fnagi.2016.00162 Text en Copyright © 2016 Steffener, Gazes, Habeck and Stern. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Steffener, Jason Gazes, Yunglin Habeck, Christian Stern, Yaakov The Indirect Effect of Age Group on Switch Costs via Gray Matter Volume and Task-Related Brain Activity |
title | The Indirect Effect of Age Group on Switch Costs via Gray Matter Volume and Task-Related Brain Activity |
title_full | The Indirect Effect of Age Group on Switch Costs via Gray Matter Volume and Task-Related Brain Activity |
title_fullStr | The Indirect Effect of Age Group on Switch Costs via Gray Matter Volume and Task-Related Brain Activity |
title_full_unstemmed | The Indirect Effect of Age Group on Switch Costs via Gray Matter Volume and Task-Related Brain Activity |
title_short | The Indirect Effect of Age Group on Switch Costs via Gray Matter Volume and Task-Related Brain Activity |
title_sort | indirect effect of age group on switch costs via gray matter volume and task-related brain activity |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942475/ https://www.ncbi.nlm.nih.gov/pubmed/27468265 http://dx.doi.org/10.3389/fnagi.2016.00162 |
work_keys_str_mv | AT steffenerjason theindirecteffectofagegrouponswitchcostsviagraymattervolumeandtaskrelatedbrainactivity AT gazesyunglin theindirecteffectofagegrouponswitchcostsviagraymattervolumeandtaskrelatedbrainactivity AT habeckchristian theindirecteffectofagegrouponswitchcostsviagraymattervolumeandtaskrelatedbrainactivity AT sternyaakov theindirecteffectofagegrouponswitchcostsviagraymattervolumeandtaskrelatedbrainactivity AT steffenerjason indirecteffectofagegrouponswitchcostsviagraymattervolumeandtaskrelatedbrainactivity AT gazesyunglin indirecteffectofagegrouponswitchcostsviagraymattervolumeandtaskrelatedbrainactivity AT habeckchristian indirecteffectofagegrouponswitchcostsviagraymattervolumeandtaskrelatedbrainactivity AT sternyaakov indirecteffectofagegrouponswitchcostsviagraymattervolumeandtaskrelatedbrainactivity |