Cargando…
Brain Decoding-Classification of Hand Written Digits from fMRI Data Employing Bayesian Networks
We are frequently exposed to hand written digits 0–9 in today's modern life. Success in decoding-classification of hand written digits helps us understand the corresponding brain mechanisms and processes and assists seriously in designing more efficient brain–computer interfaces. However, all d...
Autores principales: | Yargholi, Elahe', Hossein-Zadeh, Gholam-Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942480/ https://www.ncbi.nlm.nih.gov/pubmed/27468261 http://dx.doi.org/10.3389/fnhum.2016.00351 |
Ejemplares similares
-
Hand classification of fMRI ICA noise components
por: Griffanti, Ludovica, et al.
Publicado: (2017) -
Probing fMRI brain connectivity and activity changes during emotion regulation by EEG neurofeedback
por: Dehghani, Amin, et al.
Publicado: (2023) -
Brain State Decoding Based on fMRI Using Semisupervised Sparse Representation Classifications
por: Zhang, Jing, et al.
Publicado: (2018) -
Deep Temporal Organization of fMRI Phase Synchrony Modes Promotes Large-Scale Disconnection in Schizophrenia
por: Zarghami, Tahereh S., et al.
Publicado: (2020) -
Dynamic functional connectivity estimation for neurofeedback emotion regulation paradigm with simultaneous EEG-fMRI analysis
por: Mosayebi, Raziyeh, et al.
Publicado: (2022)