Cargando…
Multiple scattering dynamics of fermions at an isolated p-wave resonance
The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermion...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942570/ https://www.ncbi.nlm.nih.gov/pubmed/27396294 http://dx.doi.org/10.1038/ncomms12069 |
_version_ | 1782442435557720064 |
---|---|
author | Thomas, R. Roberts, K. O. Tiesinga, E. Wade, A. C. J. Blakie, P. B. Deb, A. B. Kjærgaard, N. |
author_facet | Thomas, R. Roberts, K. O. Tiesinga, E. Wade, A. C. J. Blakie, P. B. Deb, A. B. Kjærgaard, N. |
author_sort | Thomas, R. |
collection | PubMed |
description | The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions, this requirement strictly prohibits scattering into 90° angles. Here we experimentally investigate the collisions of ultracold clouds fermionic (40)K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90° yield. Above this threshold, effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for (40)K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, whereas the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance. |
format | Online Article Text |
id | pubmed-4942570 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-49425702016-09-20 Multiple scattering dynamics of fermions at an isolated p-wave resonance Thomas, R. Roberts, K. O. Tiesinga, E. Wade, A. C. J. Blakie, P. B. Deb, A. B. Kjærgaard, N. Nat Commun Article The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions, this requirement strictly prohibits scattering into 90° angles. Here we experimentally investigate the collisions of ultracold clouds fermionic (40)K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90° yield. Above this threshold, effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for (40)K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, whereas the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance. Nature Publishing Group 2016-07-11 /pmc/articles/PMC4942570/ /pubmed/27396294 http://dx.doi.org/10.1038/ncomms12069 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Thomas, R. Roberts, K. O. Tiesinga, E. Wade, A. C. J. Blakie, P. B. Deb, A. B. Kjærgaard, N. Multiple scattering dynamics of fermions at an isolated p-wave resonance |
title | Multiple scattering dynamics of fermions at an isolated p-wave resonance |
title_full | Multiple scattering dynamics of fermions at an isolated p-wave resonance |
title_fullStr | Multiple scattering dynamics of fermions at an isolated p-wave resonance |
title_full_unstemmed | Multiple scattering dynamics of fermions at an isolated p-wave resonance |
title_short | Multiple scattering dynamics of fermions at an isolated p-wave resonance |
title_sort | multiple scattering dynamics of fermions at an isolated p-wave resonance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942570/ https://www.ncbi.nlm.nih.gov/pubmed/27396294 http://dx.doi.org/10.1038/ncomms12069 |
work_keys_str_mv | AT thomasr multiplescatteringdynamicsoffermionsatanisolatedpwaveresonance AT robertsko multiplescatteringdynamicsoffermionsatanisolatedpwaveresonance AT tiesingae multiplescatteringdynamicsoffermionsatanisolatedpwaveresonance AT wadeacj multiplescatteringdynamicsoffermionsatanisolatedpwaveresonance AT blakiepb multiplescatteringdynamicsoffermionsatanisolatedpwaveresonance AT debab multiplescatteringdynamicsoffermionsatanisolatedpwaveresonance AT kjærgaardn multiplescatteringdynamicsoffermionsatanisolatedpwaveresonance |