Cargando…
Ens-PPI: A Novel Ensemble Classifier for Predicting the Interactions of Proteins Using Autocovariance Transformation from PSSM
Protein-Protein Interactions (PPIs) play vital roles in most biological activities. Although the development of high-throughput biological technologies has generated considerable PPI data for various organisms, many problems are still far from being solved. A number of computational methods based on...
Autores principales: | Gao, Zhen-Guo, Wang, Lei, Xia, Shi-Xiong, You, Zhu-Hong, Yan, Xin, Zhou, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942601/ https://www.ncbi.nlm.nih.gov/pubmed/27437399 http://dx.doi.org/10.1155/2016/4563524 |
Ejemplares similares
-
EL_PSSM-RT: DNA-binding residue prediction by integrating ensemble learning with PSSM Relation Transformation
por: Zhou, Jiyun, et al.
Publicado: (2017) -
An Ensemble Classifier to Predict Protein–Protein Interactions by Combining PSSM-based Evolutionary Information with Local Binary Pattern Model
por: Li, Yang, et al.
Publicado: (2019) -
Large covariance and autocovariance matrices
por: Bose, Arup, et al.
Publicado: (2018) -
Effect of neural connectivity on autocovariance and cross covariance estimates
por: Stecker, Mark M
Publicado: (2007) -
Ensemble Learning Prediction of Drug-Target Interactions Using GIST Descriptor Extracted from PSSM-Based Evolutionary Information
por: Zhan, Xinke, et al.
Publicado: (2020)