Cargando…

Imaging cervical cytology with scanning near-field optical microscopy (SNOM) coupled with an IR-FEL

Cervical cancer remains a major cause of morbidity and mortality among women, especially in the developing world. Increased synthesis of proteins, lipids and nucleic acids is a pre-condition for the rapid proliferation of cancer cells. We show that scanning near-field optical microscopy, in combinat...

Descripción completa

Detalles Bibliográficos
Autores principales: Halliwell, Diane E., Morais, Camilo L. M., Lima, Kássio M. G., Trevisan, Julio, Siggel-King, Michele R. F., Craig, Tim, Ingham, James, Martin, David S., Heys, Kelly A., Kyrgiou, Maria, Mitra, Anita, Paraskevaidis, Evangelos, Theophilou, Georgios, Martin-Hirsch, Pierre L., Cricenti, Antonio, Luce, Marco, Weightman, Peter, Martin, Francis L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942606/
https://www.ncbi.nlm.nih.gov/pubmed/27406404
http://dx.doi.org/10.1038/srep29494
Descripción
Sumario:Cervical cancer remains a major cause of morbidity and mortality among women, especially in the developing world. Increased synthesis of proteins, lipids and nucleic acids is a pre-condition for the rapid proliferation of cancer cells. We show that scanning near-field optical microscopy, in combination with an infrared free electron laser (SNOM-IR-FEL), is able to distinguish between normal and squamous low-grade and high-grade dyskaryosis, and between normal and mixed squamous/glandular pre-invasive and adenocarcinoma cervical lesions, at designated wavelengths associated with DNA, Amide I/II and lipids. These findings evidence the promise of the SNOM-IR-FEL technique in obtaining chemical information relevant to the detection of cervical cell abnormalities and cancer diagnosis at spatial resolutions below the diffraction limit (≥0.2 μm). We compare these results with analyses following attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy; although this latter approach has been demonstrated to detect underlying cervical atypia missed by conventional cytology, it is limited by a spatial resolution of ~3 μm to 30 μm due to the optical diffraction limit.