Cargando…
Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization
By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification proce...
Autores principales: | Zhang, Chunyuan, Zhu, Qingxin, Niu, Xinzheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942627/ https://www.ncbi.nlm.nih.gov/pubmed/27436996 http://dx.doi.org/10.1155/2016/2305854 |
Ejemplares similares
-
Minibatch Recursive Least Squares Q-Learning
por: Zhang, Chunyuan, et al.
Publicado: (2021) -
Sparse Sliding-Window Kernel Recursive Least-Squares Channel Prediction for Fast Time-Varying MIMO Systems
por: Ai, Xingxing, et al.
Publicado: (2022) -
A scalable implementation of the recursive least-squares algorithm for training spiking neural networks
por: Arthur, Benjamin J., et al.
Publicado: (2023) -
Kernel recursive least square tracker and long-short term memory ensemble based battery health prognostic model
por: Ali, Muhammad Umair, et al.
Publicado: (2021) -
Variable step-size evolving participatory learning with kernel recursive least squares applied to gas prices forecasting in Brazil
por: Queiroz, Eduardo Ravaglia Campos, et al.
Publicado: (2021)