Cargando…

Advances in mapping malaria for elimination: fine resolution modelling of Plasmodium falciparum incidence

The long-term goal of the global effort to tackle malaria is national and regional elimination and eventually eradication. Fine scale multi-temporal mapping in low malaria transmission settings remains a challenge and the World Health Organisation propose use of surveillance in elimination settings....

Descripción completa

Detalles Bibliográficos
Autores principales: Alegana, Victor A., Atkinson, Peter M., Lourenço, Christopher, Ruktanonchai, Nick W., Bosco, Claudio, Erbach-Schoenberg, Elisabeth zu, Didier, Bradley, Pindolia, Deepa, Le Menach, Arnaud, Katokele, Stark, Uusiku, Petrina, Tatem, Andrew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942778/
https://www.ncbi.nlm.nih.gov/pubmed/27405532
http://dx.doi.org/10.1038/srep29628
_version_ 1782442478486421504
author Alegana, Victor A.
Atkinson, Peter M.
Lourenço, Christopher
Ruktanonchai, Nick W.
Bosco, Claudio
Erbach-Schoenberg, Elisabeth zu
Didier, Bradley
Pindolia, Deepa
Le Menach, Arnaud
Katokele, Stark
Uusiku, Petrina
Tatem, Andrew J.
author_facet Alegana, Victor A.
Atkinson, Peter M.
Lourenço, Christopher
Ruktanonchai, Nick W.
Bosco, Claudio
Erbach-Schoenberg, Elisabeth zu
Didier, Bradley
Pindolia, Deepa
Le Menach, Arnaud
Katokele, Stark
Uusiku, Petrina
Tatem, Andrew J.
author_sort Alegana, Victor A.
collection PubMed
description The long-term goal of the global effort to tackle malaria is national and regional elimination and eventually eradication. Fine scale multi-temporal mapping in low malaria transmission settings remains a challenge and the World Health Organisation propose use of surveillance in elimination settings. Here, we show how malaria incidence can be modelled at a fine spatial and temporal resolution from health facility data to help focus surveillance and control to population not attending health facilities. Using Namibia as a case study, we predicted the incidence of malaria, via a Bayesian spatio-temporal model, at a fine spatial resolution from parasitologically confirmed malaria cases and incorporated metrics on healthcare use as well as measures of uncertainty associated with incidence predictions. We then combined the incidence estimates with population maps to estimate clinical burdens and show the benefits of such mapping to identifying areas and seasons that can be targeted for improved surveillance and interventions. Fine spatial resolution maps produced using this approach were then used to target resources to specific local populations, and to specific months of the season. This remote targeting can be especially effective where the population distribution is sparse and further surveillance can be limited to specific local areas.
format Online
Article
Text
id pubmed-4942778
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49427782016-07-20 Advances in mapping malaria for elimination: fine resolution modelling of Plasmodium falciparum incidence Alegana, Victor A. Atkinson, Peter M. Lourenço, Christopher Ruktanonchai, Nick W. Bosco, Claudio Erbach-Schoenberg, Elisabeth zu Didier, Bradley Pindolia, Deepa Le Menach, Arnaud Katokele, Stark Uusiku, Petrina Tatem, Andrew J. Sci Rep Article The long-term goal of the global effort to tackle malaria is national and regional elimination and eventually eradication. Fine scale multi-temporal mapping in low malaria transmission settings remains a challenge and the World Health Organisation propose use of surveillance in elimination settings. Here, we show how malaria incidence can be modelled at a fine spatial and temporal resolution from health facility data to help focus surveillance and control to population not attending health facilities. Using Namibia as a case study, we predicted the incidence of malaria, via a Bayesian spatio-temporal model, at a fine spatial resolution from parasitologically confirmed malaria cases and incorporated metrics on healthcare use as well as measures of uncertainty associated with incidence predictions. We then combined the incidence estimates with population maps to estimate clinical burdens and show the benefits of such mapping to identifying areas and seasons that can be targeted for improved surveillance and interventions. Fine spatial resolution maps produced using this approach were then used to target resources to specific local populations, and to specific months of the season. This remote targeting can be especially effective where the population distribution is sparse and further surveillance can be limited to specific local areas. Nature Publishing Group 2016-07-13 /pmc/articles/PMC4942778/ /pubmed/27405532 http://dx.doi.org/10.1038/srep29628 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Alegana, Victor A.
Atkinson, Peter M.
Lourenço, Christopher
Ruktanonchai, Nick W.
Bosco, Claudio
Erbach-Schoenberg, Elisabeth zu
Didier, Bradley
Pindolia, Deepa
Le Menach, Arnaud
Katokele, Stark
Uusiku, Petrina
Tatem, Andrew J.
Advances in mapping malaria for elimination: fine resolution modelling of Plasmodium falciparum incidence
title Advances in mapping malaria for elimination: fine resolution modelling of Plasmodium falciparum incidence
title_full Advances in mapping malaria for elimination: fine resolution modelling of Plasmodium falciparum incidence
title_fullStr Advances in mapping malaria for elimination: fine resolution modelling of Plasmodium falciparum incidence
title_full_unstemmed Advances in mapping malaria for elimination: fine resolution modelling of Plasmodium falciparum incidence
title_short Advances in mapping malaria for elimination: fine resolution modelling of Plasmodium falciparum incidence
title_sort advances in mapping malaria for elimination: fine resolution modelling of plasmodium falciparum incidence
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942778/
https://www.ncbi.nlm.nih.gov/pubmed/27405532
http://dx.doi.org/10.1038/srep29628
work_keys_str_mv AT aleganavictora advancesinmappingmalariaforeliminationfineresolutionmodellingofplasmodiumfalciparumincidence
AT atkinsonpeterm advancesinmappingmalariaforeliminationfineresolutionmodellingofplasmodiumfalciparumincidence
AT lourencochristopher advancesinmappingmalariaforeliminationfineresolutionmodellingofplasmodiumfalciparumincidence
AT ruktanonchainickw advancesinmappingmalariaforeliminationfineresolutionmodellingofplasmodiumfalciparumincidence
AT boscoclaudio advancesinmappingmalariaforeliminationfineresolutionmodellingofplasmodiumfalciparumincidence
AT erbachschoenbergelisabethzu advancesinmappingmalariaforeliminationfineresolutionmodellingofplasmodiumfalciparumincidence
AT didierbradley advancesinmappingmalariaforeliminationfineresolutionmodellingofplasmodiumfalciparumincidence
AT pindoliadeepa advancesinmappingmalariaforeliminationfineresolutionmodellingofplasmodiumfalciparumincidence
AT lemenacharnaud advancesinmappingmalariaforeliminationfineresolutionmodellingofplasmodiumfalciparumincidence
AT katokelestark advancesinmappingmalariaforeliminationfineresolutionmodellingofplasmodiumfalciparumincidence
AT uusikupetrina advancesinmappingmalariaforeliminationfineresolutionmodellingofplasmodiumfalciparumincidence
AT tatemandrewj advancesinmappingmalariaforeliminationfineresolutionmodellingofplasmodiumfalciparumincidence