Cargando…
Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp.
BACKGROUND: For thousands of years, Tunisian geothermal water has been used in bathing. Indeed, thermal baths “Hammam” were recommended in the treatment of different type of illnesses as, for instance, for relaxing joints and soothing. The ability of microalgae to sustain at the high temperature mak...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942953/ https://www.ncbi.nlm.nih.gov/pubmed/27405739 http://dx.doi.org/10.1186/s12906-016-1198-6 |
_version_ | 1782442509152026624 |
---|---|
author | Trabelsi, Lamia Chaieb, Olfa Mnari, Amira Abid-Essafi, Salwa Aleya, Lotfi |
author_facet | Trabelsi, Lamia Chaieb, Olfa Mnari, Amira Abid-Essafi, Salwa Aleya, Lotfi |
author_sort | Trabelsi, Lamia |
collection | PubMed |
description | BACKGROUND: For thousands of years, Tunisian geothermal water has been used in bathing. Indeed, thermal baths “Hammam” were recommended in the treatment of different type of illnesses as, for instance, for relaxing joints and soothing. The ability of microalgae to sustain at the high temperature makes them potential producers of high value thermostable bio-products. This study aimed to explore the therapeutic potential of the aqueous extracellular polysaccharides (AEPS) of the Tunisian thermophilic microalgae Graesiella sp. and to evaluate its physico-chemical characteristics. METHODS: Different parameters were used to characterize the AEPS. The dry weight, volatile dry weight, elemental analysis, monosaccharide composition and IR-spectroscopy analysis. Carbohydrate, uronic acid, ester sulfate and protein concentrations were also determined using colorimetric assay. AEPS was analyzed for its antioxidant propriety by means of total antioxidant capacity, DPPH radicals scavenging assay, ferrous chelating ability and hydroxyl and superoxide radical scavenging activity. The antiproliferative activity of AEPS was evaluated for HepG2 and Caco-2 cells using the MTT assay. RESULTS: The Graesiella sp. AEPS is found to be a hetero-sulfated-anionic polysaccharides that contain carbohydrate (52 %), uronic acids (23 %), ester sulfate (11 %) and protein (12 %). The carbohydrate fraction was formed by eight neutral sugars glucose, galactose, mannose, fucose, rhamnose, xylose, arabinose and ribose. The FT-IR revealed the presence of carboxyl, hydroxyl, amine and sulfate groups. AEPS showed high activity as reducing agent, high ferrous chelating capacity and caused a significant decrease in a concentration-dependent manner of hydroxyl radical. A moderate DPPH scavenging activity and a poor superoxide radical scavenging ability were also observed. AEPS treatment (from 0.01 to 2.5 mg/ml) caused also a clear decrease of cell viabilities in a dose-dependent manner. The IC(50) values obtained in HepG2 and Caco-2 cells were 1.06 mg/ml and 0.3 mg/ml respectively. CONCLUSIONS: This study evidenced that the Graesiella sp. AEPS exhibits antioxidant and antiproliferative activities. The biological activities of this extract depend on its fine structural features. Further work will identify and purify the active polysaccharides to enhance our understanding of their complete structure and relationships with its function. |
format | Online Article Text |
id | pubmed-4942953 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-49429532016-07-14 Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. Trabelsi, Lamia Chaieb, Olfa Mnari, Amira Abid-Essafi, Salwa Aleya, Lotfi BMC Complement Altern Med Research Article BACKGROUND: For thousands of years, Tunisian geothermal water has been used in bathing. Indeed, thermal baths “Hammam” were recommended in the treatment of different type of illnesses as, for instance, for relaxing joints and soothing. The ability of microalgae to sustain at the high temperature makes them potential producers of high value thermostable bio-products. This study aimed to explore the therapeutic potential of the aqueous extracellular polysaccharides (AEPS) of the Tunisian thermophilic microalgae Graesiella sp. and to evaluate its physico-chemical characteristics. METHODS: Different parameters were used to characterize the AEPS. The dry weight, volatile dry weight, elemental analysis, monosaccharide composition and IR-spectroscopy analysis. Carbohydrate, uronic acid, ester sulfate and protein concentrations were also determined using colorimetric assay. AEPS was analyzed for its antioxidant propriety by means of total antioxidant capacity, DPPH radicals scavenging assay, ferrous chelating ability and hydroxyl and superoxide radical scavenging activity. The antiproliferative activity of AEPS was evaluated for HepG2 and Caco-2 cells using the MTT assay. RESULTS: The Graesiella sp. AEPS is found to be a hetero-sulfated-anionic polysaccharides that contain carbohydrate (52 %), uronic acids (23 %), ester sulfate (11 %) and protein (12 %). The carbohydrate fraction was formed by eight neutral sugars glucose, galactose, mannose, fucose, rhamnose, xylose, arabinose and ribose. The FT-IR revealed the presence of carboxyl, hydroxyl, amine and sulfate groups. AEPS showed high activity as reducing agent, high ferrous chelating capacity and caused a significant decrease in a concentration-dependent manner of hydroxyl radical. A moderate DPPH scavenging activity and a poor superoxide radical scavenging ability were also observed. AEPS treatment (from 0.01 to 2.5 mg/ml) caused also a clear decrease of cell viabilities in a dose-dependent manner. The IC(50) values obtained in HepG2 and Caco-2 cells were 1.06 mg/ml and 0.3 mg/ml respectively. CONCLUSIONS: This study evidenced that the Graesiella sp. AEPS exhibits antioxidant and antiproliferative activities. The biological activities of this extract depend on its fine structural features. Further work will identify and purify the active polysaccharides to enhance our understanding of their complete structure and relationships with its function. BioMed Central 2016-07-12 /pmc/articles/PMC4942953/ /pubmed/27405739 http://dx.doi.org/10.1186/s12906-016-1198-6 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Trabelsi, Lamia Chaieb, Olfa Mnari, Amira Abid-Essafi, Salwa Aleya, Lotfi Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. |
title | Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. |
title_full | Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. |
title_fullStr | Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. |
title_full_unstemmed | Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. |
title_short | Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. |
title_sort | partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae graesiella sp. |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942953/ https://www.ncbi.nlm.nih.gov/pubmed/27405739 http://dx.doi.org/10.1186/s12906-016-1198-6 |
work_keys_str_mv | AT trabelsilamia partialcharacterizationandantioxidantandantiproliferativeactivitiesoftheaqueousextracellularpolysaccharidesfromthethermophilicmicroalgaegraesiellasp AT chaiebolfa partialcharacterizationandantioxidantandantiproliferativeactivitiesoftheaqueousextracellularpolysaccharidesfromthethermophilicmicroalgaegraesiellasp AT mnariamira partialcharacterizationandantioxidantandantiproliferativeactivitiesoftheaqueousextracellularpolysaccharidesfromthethermophilicmicroalgaegraesiellasp AT abidessafisalwa partialcharacterizationandantioxidantandantiproliferativeactivitiesoftheaqueousextracellularpolysaccharidesfromthethermophilicmicroalgaegraesiellasp AT aleyalotfi partialcharacterizationandantioxidantandantiproliferativeactivitiesoftheaqueousextracellularpolysaccharidesfromthethermophilicmicroalgaegraesiellasp |