Cargando…

Interplay Between the Effects of Dilated Cardiomyopathy Mutation (R206L) and the Protein Kinase C Phosphomimic (T204E) of Rat Cardiac Troponin T Are Differently Modulated by α‐ and β‐Myosin Heavy Chain Isoforms

BACKGROUND: We hypothesized that the functional effects of R206L—a rat analog of the dilated cardiomyopathy (DCM) mutation R205L in human cardiac troponin T (TnT)—were differently modulated by myosin heavy chain (MHC) isoforms and T204E, a protein kinase C (PKC) phosphomimic of TnT. Our hypothesis w...

Descripción completa

Detalles Bibliográficos
Autores principales: Michael, John Jeshurun, Chandra, Murali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4943253/
https://www.ncbi.nlm.nih.gov/pubmed/27001966
http://dx.doi.org/10.1161/JAHA.115.002777
_version_ 1782442560036274176
author Michael, John Jeshurun
Chandra, Murali
author_facet Michael, John Jeshurun
Chandra, Murali
author_sort Michael, John Jeshurun
collection PubMed
description BACKGROUND: We hypothesized that the functional effects of R206L—a rat analog of the dilated cardiomyopathy (DCM) mutation R205L in human cardiac troponin T (TnT)—were differently modulated by myosin heavy chain (MHC) isoforms and T204E, a protein kinase C (PKC) phosphomimic of TnT. Our hypothesis was based on two observations: (1) α‐ and β‐MHC differentially influence the functional effects of TnT; and (2) PKC isoforms capable of phosphorylating TnT are upregulated in failing human hearts. METHODS AND RESULTS: We generated 4 recombinant TnT variants: wild type; R206L; T204E; and R206L+T204E. Functional effects of the TnT variants were tested in cardiac muscle fibers (minimum 14 per group) from normal (α‐MHC) and propylthiouracil‐treated rats (β‐MHC) using steady‐state and dynamic contractile measurements. Notably, in α‐MHC fibers, Ca(2+)‐activated maximal tension was attenuated by R206L (≈32%), T204E (≈63%), and R206L+T204E (≈64%). In β‐MHC fibers, maximal tension was unaffected by R206L, but was attenuated by T204E (≈33%) and R206L+T204E (≈40%). Thus, β‐MHC differentially counteracted the attenuating effects of the TnT variants on tension. However, in β‐MHC fibers, R206L+T204E attenuated tension to a greater extent when compared to T204E alone. In β‐MHC fibers, R206L+T204E attenuated the magnitude of the length‐mediated recruitment of new cross‐bridges (≈28%), suggesting that the Frank‐Starling mechanism was impaired. CONCLUSIONS: Our findings are the first (to our knowledge) to demonstrate that the functional effects of a DCM‐linked TnT mutation are not only modulated by MHC isoforms, but also by the pathology‐associated post‐translational modifications of TnT.
format Online
Article
Text
id pubmed-4943253
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-49432532016-07-20 Interplay Between the Effects of Dilated Cardiomyopathy Mutation (R206L) and the Protein Kinase C Phosphomimic (T204E) of Rat Cardiac Troponin T Are Differently Modulated by α‐ and β‐Myosin Heavy Chain Isoforms Michael, John Jeshurun Chandra, Murali J Am Heart Assoc Original Research BACKGROUND: We hypothesized that the functional effects of R206L—a rat analog of the dilated cardiomyopathy (DCM) mutation R205L in human cardiac troponin T (TnT)—were differently modulated by myosin heavy chain (MHC) isoforms and T204E, a protein kinase C (PKC) phosphomimic of TnT. Our hypothesis was based on two observations: (1) α‐ and β‐MHC differentially influence the functional effects of TnT; and (2) PKC isoforms capable of phosphorylating TnT are upregulated in failing human hearts. METHODS AND RESULTS: We generated 4 recombinant TnT variants: wild type; R206L; T204E; and R206L+T204E. Functional effects of the TnT variants were tested in cardiac muscle fibers (minimum 14 per group) from normal (α‐MHC) and propylthiouracil‐treated rats (β‐MHC) using steady‐state and dynamic contractile measurements. Notably, in α‐MHC fibers, Ca(2+)‐activated maximal tension was attenuated by R206L (≈32%), T204E (≈63%), and R206L+T204E (≈64%). In β‐MHC fibers, maximal tension was unaffected by R206L, but was attenuated by T204E (≈33%) and R206L+T204E (≈40%). Thus, β‐MHC differentially counteracted the attenuating effects of the TnT variants on tension. However, in β‐MHC fibers, R206L+T204E attenuated tension to a greater extent when compared to T204E alone. In β‐MHC fibers, R206L+T204E attenuated the magnitude of the length‐mediated recruitment of new cross‐bridges (≈28%), suggesting that the Frank‐Starling mechanism was impaired. CONCLUSIONS: Our findings are the first (to our knowledge) to demonstrate that the functional effects of a DCM‐linked TnT mutation are not only modulated by MHC isoforms, but also by the pathology‐associated post‐translational modifications of TnT. John Wiley and Sons Inc. 2016-03-21 /pmc/articles/PMC4943253/ /pubmed/27001966 http://dx.doi.org/10.1161/JAHA.115.002777 Text en © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Original Research
Michael, John Jeshurun
Chandra, Murali
Interplay Between the Effects of Dilated Cardiomyopathy Mutation (R206L) and the Protein Kinase C Phosphomimic (T204E) of Rat Cardiac Troponin T Are Differently Modulated by α‐ and β‐Myosin Heavy Chain Isoforms
title Interplay Between the Effects of Dilated Cardiomyopathy Mutation (R206L) and the Protein Kinase C Phosphomimic (T204E) of Rat Cardiac Troponin T Are Differently Modulated by α‐ and β‐Myosin Heavy Chain Isoforms
title_full Interplay Between the Effects of Dilated Cardiomyopathy Mutation (R206L) and the Protein Kinase C Phosphomimic (T204E) of Rat Cardiac Troponin T Are Differently Modulated by α‐ and β‐Myosin Heavy Chain Isoforms
title_fullStr Interplay Between the Effects of Dilated Cardiomyopathy Mutation (R206L) and the Protein Kinase C Phosphomimic (T204E) of Rat Cardiac Troponin T Are Differently Modulated by α‐ and β‐Myosin Heavy Chain Isoforms
title_full_unstemmed Interplay Between the Effects of Dilated Cardiomyopathy Mutation (R206L) and the Protein Kinase C Phosphomimic (T204E) of Rat Cardiac Troponin T Are Differently Modulated by α‐ and β‐Myosin Heavy Chain Isoforms
title_short Interplay Between the Effects of Dilated Cardiomyopathy Mutation (R206L) and the Protein Kinase C Phosphomimic (T204E) of Rat Cardiac Troponin T Are Differently Modulated by α‐ and β‐Myosin Heavy Chain Isoforms
title_sort interplay between the effects of dilated cardiomyopathy mutation (r206l) and the protein kinase c phosphomimic (t204e) of rat cardiac troponin t are differently modulated by α‐ and β‐myosin heavy chain isoforms
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4943253/
https://www.ncbi.nlm.nih.gov/pubmed/27001966
http://dx.doi.org/10.1161/JAHA.115.002777
work_keys_str_mv AT michaeljohnjeshurun interplaybetweentheeffectsofdilatedcardiomyopathymutationr206landtheproteinkinasecphosphomimict204eofratcardiactroponintaredifferentlymodulatedbyaandbmyosinheavychainisoforms
AT chandramurali interplaybetweentheeffectsofdilatedcardiomyopathymutationr206landtheproteinkinasecphosphomimict204eofratcardiactroponintaredifferentlymodulatedbyaandbmyosinheavychainisoforms