Cargando…

Germinal center B cells recognize antigen through a specialized immune synapse architecture

B cell activation is regulated by B cell antigen receptor (BCR) signaling and antigen internalization in immune synapses. Using large-scale imaging across B cell subsets, we show that in contrast to naive and memory B cells, which gathered antigen towards the synapse center before internalization, g...

Descripción completa

Detalles Bibliográficos
Autores principales: Nowosad, Carla R., Spillane, Katelyn M., Tolar, Pavel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4943528/
https://www.ncbi.nlm.nih.gov/pubmed/27183103
http://dx.doi.org/10.1038/ni.3458
Descripción
Sumario:B cell activation is regulated by B cell antigen receptor (BCR) signaling and antigen internalization in immune synapses. Using large-scale imaging across B cell subsets, we show that in contrast to naive and memory B cells, which gathered antigen towards the synapse center before internalization, germinal center (GC) B cells extracted antigen by a distinct pathway using small peripheral clusters. Both naive and GC B cell synapses required proximal BCR signaling, but GC cells signaled less through the protein kinase C-β (PKC-β)–NF-κB pathway and produced stronger tugging forces on the BCR, thereby more stringently regulating antigen binding. Consequently, GC B cells extracted antigen with better affinity discrimination than naive B cells, suggesting that specialized biomechanical patterns in B cell synapses regulate T-cell dependent selection of high-affinity B cells in GCs.