Cargando…
Impact of Chaos Functions on Modern Swarm Optimizers
Exploration and exploitation are two essential components for any optimization algorithm. Much exploration leads to oscillation and premature convergence while too much exploitation slows down the optimization algorithm and the optimizer may be stuck in local minima. Therefore, balancing the rates o...
Autores principales: | Emary, E., Zawbaa, Hossam M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4943604/ https://www.ncbi.nlm.nih.gov/pubmed/27410691 http://dx.doi.org/10.1371/journal.pone.0158738 |
Ejemplares similares
-
Feature Selection via Chaotic Antlion Optimization
por: Zawbaa, Hossam M., et al.
Publicado: (2016) -
Swarm Intelligence
por: Hassanien, Aboul, et al.
Publicado: (2018) -
Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT
por: Nie, Xiaohua, et al.
Publicado: (2017) -
Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening
por: Tai, Hio Kuan, et al.
Publicado: (2018) -
Chaos Adaptive Particle Swarm for Physical Exercise Health Assessment
por: He, Zheyu, et al.
Publicado: (2022)