Cargando…
Single-Genotype Syntrophy by Rhodopseudomonas palustris Is Not a Strategy to Aid Redox Balance during Anaerobic Degradation of Lignin Monomers
Rhodopseudomonas palustris has emerged as a model microbe for the anaerobic metabolism of p-coumarate, which is an aromatic compound and a primary component of lignin. However, under anaerobic conditions, R. palustris must actively eliminate excess reducing equivalents through a number of known stra...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4943940/ https://www.ncbi.nlm.nih.gov/pubmed/27471497 http://dx.doi.org/10.3389/fmicb.2016.01082 |
Sumario: | Rhodopseudomonas palustris has emerged as a model microbe for the anaerobic metabolism of p-coumarate, which is an aromatic compound and a primary component of lignin. However, under anaerobic conditions, R. palustris must actively eliminate excess reducing equivalents through a number of known strategies (e.g., CO(2) fixation, H(2) evolution) to avoid lethal redox imbalance. Others had hypothesized that to ease the burden of this redox imbalance, a clonal population of R. palustris could functionally differentiate into a pseudo-consortium. Within this pseudo-consortium, one sub-population would perform the aromatic moiety degradation into acetate, while the other sub-population would oxidize acetate, resulting in a single-genotype syntrophy through acetate sharing. Here, the objective was to test this hypothesis by utilizing microbial electrochemistry as a research tool with the extracellular-electron-transferring bacterium Geobacter sulfurreducens as a reporter strain replacing the hypothesized acetate-oxidizing sub-population. We used a 2 × 4 experimental design with pure cultures of R. palustris in serum bottles and co-cultures of R. palustris and G. sulfurreducens in bioelectrochemical systems. This experimental design included growth medium with and without bicarbonate to induce non-lethal and lethal redox imbalance conditions, respectively, in R. palustris. Finally, the design also included a mutant strain (NifA(*)) of R. palustris, which constitutively produces H(2), to serve both as a positive control for metabolite secretion (H(2)) to G. sulfurreducens, and as a non-lethal redox control for without bicarbonate conditions. Our results demonstrate that acetate sharing between different sub-populations of R. palustris does not occur while degrading p-coumarate under either non-lethal or lethal redox imbalance conditions. This work highlights the strength of microbial electrochemistry as a tool for studying microbial syntrophy. |
---|