Cargando…

Infimal Convolution Regularisation Functionals of BV and [Formula: see text] Spaces: Part I: The Finite [Formula: see text] Case

We study a general class of infimal convolution type regularisation functionals suitable for applications in image processing. These functionals incorporate a combination of the total variation seminorm and [Formula: see text] norms. A unified well-posedness analysis is presented and a detailed stud...

Descripción completa

Detalles Bibliográficos
Autores principales: Burger, Martin, Papafitsoros, Konstantinos, Papoutsellis, Evangelos, Schönlieb, Carola-Bibiane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944669/
https://www.ncbi.nlm.nih.gov/pubmed/27471345
http://dx.doi.org/10.1007/s10851-015-0624-6
Descripción
Sumario:We study a general class of infimal convolution type regularisation functionals suitable for applications in image processing. These functionals incorporate a combination of the total variation seminorm and [Formula: see text] norms. A unified well-posedness analysis is presented and a detailed study of the one-dimensional model is performed, by computing exact solutions for the corresponding denoising problem and the case [Formula: see text] . Furthermore, the dependency of the regularisation properties of this infimal convolution approach to the choice of p is studied. It turns out that in the case [Formula: see text] this regulariser is equivalent to the Huber-type variant of total variation regularisation. We provide numerical examples for image decomposition as well as for image denoising. We show that our model is capable of eliminating the staircasing effect, a well-known disadvantage of total variation regularisation. Moreover as p increases we obtain almost piecewise affine reconstructions, leading also to a better preservation of hat-like structures.