Cargando…

Ventricular Volume Load Reveals the Mechanoelastic Impact of Communicating Hydrocephalus on Dynamic Cerebral Autoregulation

Several studies have shown that the progression of communicating hydrocephalus is associated with diminished cerebral perfusion and microangiopathy. If communicating hydrocephalus similarly alters the cerebrospinal fluid circulation and cerebral blood flow, both may be related to intracranial mechan...

Descripción completa

Detalles Bibliográficos
Autores principales: Haubrich, Christina, Czosnyka, Marek, Diehl, Rolf, Smielewski, Peter, Czosnyka, Zofia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944997/
https://www.ncbi.nlm.nih.gov/pubmed/27415784
http://dx.doi.org/10.1371/journal.pone.0158506
_version_ 1782442849047937024
author Haubrich, Christina
Czosnyka, Marek
Diehl, Rolf
Smielewski, Peter
Czosnyka, Zofia
author_facet Haubrich, Christina
Czosnyka, Marek
Diehl, Rolf
Smielewski, Peter
Czosnyka, Zofia
author_sort Haubrich, Christina
collection PubMed
description Several studies have shown that the progression of communicating hydrocephalus is associated with diminished cerebral perfusion and microangiopathy. If communicating hydrocephalus similarly alters the cerebrospinal fluid circulation and cerebral blood flow, both may be related to intracranial mechanoelastic properties as, for instance, the volume pressure compliance. Twenty-three shunted patients with communicating hydrocephalus underwent intraventricular constant-flow infusion with Hartmann’s solution. The monitoring included transcranial Doppler (TCD) flow velocities (FV) in the middle (MCA) and posterior cerebral arteries (PCA), intracranial pressure (ICP), and systemic arterial blood pressure (ABP). The analysis covered cerebral perfusion pressure (CPP), the index of pressure-volume compensatory reserve (RAP), and phase shift angles between Mayer waves (3 to 9 cpm) in ABP and MCA-FV or PCA-FV. Due to intraventricular infusion, the pressure-volume reserve was exhausted (RAP) 0.84+/-0.1 and ICP was increased from baseline 11.5+/-5.6 to plateau levels of 20.7+/-6.4 mmHg. The ratio dRAP/dICP distinguished patients with large 0.1+/-0.01, medium 0.05+/-0.02, and small 0.02+/-0.01 intracranial volume compliances. Both M wave phase shift angles (r = 0.64; p<0.01) and CPP (r = 0.36; p<0.05) displayed a gradual decline with decreasing dRAP/dICP gradients. This study showed that in communicating hydrocephalus, CPP and dynamic cerebral autoregulation in particular, depend on the volume-pressure compliance. The results suggested that the alteration of mechanoelastic characteristics contributes to a reduced cerebral perfusion and a loss of autonomy of cerebral blood flow regulation. Results warrant a prospective TCD follow-up to verify whether the alteration of dynamic cerebral autoregulation may indicate a progression of communicating hydrocephalus.
format Online
Article
Text
id pubmed-4944997
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-49449972016-08-08 Ventricular Volume Load Reveals the Mechanoelastic Impact of Communicating Hydrocephalus on Dynamic Cerebral Autoregulation Haubrich, Christina Czosnyka, Marek Diehl, Rolf Smielewski, Peter Czosnyka, Zofia PLoS One Research Article Several studies have shown that the progression of communicating hydrocephalus is associated with diminished cerebral perfusion and microangiopathy. If communicating hydrocephalus similarly alters the cerebrospinal fluid circulation and cerebral blood flow, both may be related to intracranial mechanoelastic properties as, for instance, the volume pressure compliance. Twenty-three shunted patients with communicating hydrocephalus underwent intraventricular constant-flow infusion with Hartmann’s solution. The monitoring included transcranial Doppler (TCD) flow velocities (FV) in the middle (MCA) and posterior cerebral arteries (PCA), intracranial pressure (ICP), and systemic arterial blood pressure (ABP). The analysis covered cerebral perfusion pressure (CPP), the index of pressure-volume compensatory reserve (RAP), and phase shift angles between Mayer waves (3 to 9 cpm) in ABP and MCA-FV or PCA-FV. Due to intraventricular infusion, the pressure-volume reserve was exhausted (RAP) 0.84+/-0.1 and ICP was increased from baseline 11.5+/-5.6 to plateau levels of 20.7+/-6.4 mmHg. The ratio dRAP/dICP distinguished patients with large 0.1+/-0.01, medium 0.05+/-0.02, and small 0.02+/-0.01 intracranial volume compliances. Both M wave phase shift angles (r = 0.64; p<0.01) and CPP (r = 0.36; p<0.05) displayed a gradual decline with decreasing dRAP/dICP gradients. This study showed that in communicating hydrocephalus, CPP and dynamic cerebral autoregulation in particular, depend on the volume-pressure compliance. The results suggested that the alteration of mechanoelastic characteristics contributes to a reduced cerebral perfusion and a loss of autonomy of cerebral blood flow regulation. Results warrant a prospective TCD follow-up to verify whether the alteration of dynamic cerebral autoregulation may indicate a progression of communicating hydrocephalus. Public Library of Science 2016-07-14 /pmc/articles/PMC4944997/ /pubmed/27415784 http://dx.doi.org/10.1371/journal.pone.0158506 Text en © 2016 Haubrich et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Haubrich, Christina
Czosnyka, Marek
Diehl, Rolf
Smielewski, Peter
Czosnyka, Zofia
Ventricular Volume Load Reveals the Mechanoelastic Impact of Communicating Hydrocephalus on Dynamic Cerebral Autoregulation
title Ventricular Volume Load Reveals the Mechanoelastic Impact of Communicating Hydrocephalus on Dynamic Cerebral Autoregulation
title_full Ventricular Volume Load Reveals the Mechanoelastic Impact of Communicating Hydrocephalus on Dynamic Cerebral Autoregulation
title_fullStr Ventricular Volume Load Reveals the Mechanoelastic Impact of Communicating Hydrocephalus on Dynamic Cerebral Autoregulation
title_full_unstemmed Ventricular Volume Load Reveals the Mechanoelastic Impact of Communicating Hydrocephalus on Dynamic Cerebral Autoregulation
title_short Ventricular Volume Load Reveals the Mechanoelastic Impact of Communicating Hydrocephalus on Dynamic Cerebral Autoregulation
title_sort ventricular volume load reveals the mechanoelastic impact of communicating hydrocephalus on dynamic cerebral autoregulation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944997/
https://www.ncbi.nlm.nih.gov/pubmed/27415784
http://dx.doi.org/10.1371/journal.pone.0158506
work_keys_str_mv AT haubrichchristina ventricularvolumeloadrevealsthemechanoelasticimpactofcommunicatinghydrocephalusondynamiccerebralautoregulation
AT czosnykamarek ventricularvolumeloadrevealsthemechanoelasticimpactofcommunicatinghydrocephalusondynamiccerebralautoregulation
AT diehlrolf ventricularvolumeloadrevealsthemechanoelasticimpactofcommunicatinghydrocephalusondynamiccerebralautoregulation
AT smielewskipeter ventricularvolumeloadrevealsthemechanoelasticimpactofcommunicatinghydrocephalusondynamiccerebralautoregulation
AT czosnykazofia ventricularvolumeloadrevealsthemechanoelasticimpactofcommunicatinghydrocephalusondynamiccerebralautoregulation