Cargando…
NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning
Fungal infection has become one of the leading causes of hospital-acquired infections with high mortality rates. Furthermore, drug resistance is common for fungus-causing diseases. Synergistic drug combinations could provide an effective strategy to overcome drug resistance. Meanwhile, synergistic d...
Autores principales: | Chen, Xing, Ren, Biao, Chen, Ming, Wang, Quanxin, Zhang, Lixin, Yan, Guiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945015/ https://www.ncbi.nlm.nih.gov/pubmed/27415801 http://dx.doi.org/10.1371/journal.pcbi.1004975 |
Ejemplares similares
-
Synergistic drug combinations prediction by integrating pharmacological data
por: Zhang, Chengzhi, et al.
Publicado: (2019) -
ASDCD: Antifungal Synergistic Drug Combination Database
por: Chen, Xing, et al.
Publicado: (2014) -
Semi-supervised learning /
Publicado: (2010) -
Semi-supervised learning for potential human microRNA-disease associations inference
por: Chen, Xing, et al.
Publicado: (2014) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022)