Cargando…
Multiple Imputation by Fully Conditional Specification for Dealing with Missing Data in a Large Epidemiologic Study
Missing data commonly occur in large epidemiologic studies. Ignoring incompleteness or handling the data inappropriately may bias study results, reduce power and efficiency, and alter important risk/benefit relationships. Standard ways of dealing with missing values, such as complete case analysis (...
Autores principales: | Liu, Yang, De, Anindya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945131/ https://www.ncbi.nlm.nih.gov/pubmed/27429686 http://dx.doi.org/10.6000/1929-6029.2015.04.03.7 |
Ejemplares similares
-
Missing data and multiple imputation in clinical epidemiological research
por: Pedersen, Alma B, et al.
Publicado: (2017) -
Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model
por: Bartlett, Jonathan W, et al.
Publicado: (2015) -
Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls
por: Sterne, Jonathan A C, et al.
Publicado: (2009) -
Using multiple imputation to deal with missing data and attrition in longitudinal studies with repeated measures of patient-reported outcomes
por: Biering, Karin, et al.
Publicado: (2015) -
Multiple Imputation to Deal with Missing Clinical Data in Rheumatologic Surveys: an Application in the WHO-ILAR COPCORD Study in Iran
por: Mirmohammadkhani, M, et al.
Publicado: (2012)