Cargando…

A Detailed Protocol to Enable Safe-Handling, Preemptive Detection, and Systematic Surveillance of Rat-Vectored Pathogens in the Urban Environment

We detail a five-stage protocol to address physical barriers and experimental limitations that have hindered routine pathogen monitoring of wild rats in urban settings. New York City potentially harbors from 2 to 32 million rats among its 8-million people. However, at a time, when people are most vu...

Descripción completa

Detalles Bibliográficos
Autores principales: Parsons, Michael H., Sarno, Ronald J., Deutsch, Michael A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945852/
https://www.ncbi.nlm.nih.gov/pubmed/27471725
http://dx.doi.org/10.3389/fpubh.2016.00132
Descripción
Sumario:We detail a five-stage protocol to address physical barriers and experimental limitations that have hindered routine pathogen monitoring of wild rats in urban settings. New York City potentially harbors from 2 to 32 million rats among its 8-million people. However, at a time, when people are most vulnerable to disease from over-crowdedness brought on by increased urbanization of society, the difficulty of studying wild rats has led to a paucity of ecological and epidemiological research. Challenges of safely handling animals and the difficulties of identifying individual animals and the emergence of their respective pathogen loads (timing of infection) have impeded progress. We previously reported a method using radio frequency identification paired with load cell and camera traps to enable the identification of individual animals and subsequent monitoring of the animals’ weights (an indicator of health). However, efficient pathogen surveillance requires repeated captures of the same individual in order to isolate and document the emergence of new pathogens, or variations in pathogen load, over time. Most of these barriers are now addressed in our protocol, which is aided by the use of a mobile, outdoor laboratory, followed by incorporation of pheromone-based lures to attract individuals back to active sensors, within a camera trap. This approach allows for the assessment of individual animal health, behaviors under camera, and changing pathogen loads and weights in most urban environments (e.g., financial district, docks, sewers, and residential). Five phases are described and presented: (1) site selection and urban trapping, (2) anesthetization, (3) serological and ectoparasite collection, (4) microchip implantation, and (5) retrapping and luring animals back to active remote sensors. In order to fulfill the unmet call for preemptive pathogen surveillance, public health officials and researchers may wish to adapt, or modify, similar protocols to ensure early detection and monitoring of rat-borne zoonoses, before they become problematic.