Cargando…

Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity

Magnetic fields generated by human and animal organs, such as the heart, brain and nervous system carry information useful for biological and medical purposes. These magnetic fields are most commonly detected using cryogenically-cooled superconducting magnetometers. Here we present the first detecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Jensen, Kasper, Budvytyte, Rima, Thomas, Rodrigo A., Wang, Tian, Fuchs, Annette M., Balabas, Mikhail V., Vasilakis, Georgios, Mosgaard, Lars D., Stærkind, Hans C., Müller, Jörg H., Heimburg, Thomas, Olesen, Søren-Peter, Polzik, Eugene S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945862/
https://www.ncbi.nlm.nih.gov/pubmed/27417378
http://dx.doi.org/10.1038/srep29638
_version_ 1782442934356934656
author Jensen, Kasper
Budvytyte, Rima
Thomas, Rodrigo A.
Wang, Tian
Fuchs, Annette M.
Balabas, Mikhail V.
Vasilakis, Georgios
Mosgaard, Lars D.
Stærkind, Hans C.
Müller, Jörg H.
Heimburg, Thomas
Olesen, Søren-Peter
Polzik, Eugene S.
author_facet Jensen, Kasper
Budvytyte, Rima
Thomas, Rodrigo A.
Wang, Tian
Fuchs, Annette M.
Balabas, Mikhail V.
Vasilakis, Georgios
Mosgaard, Lars D.
Stærkind, Hans C.
Müller, Jörg H.
Heimburg, Thomas
Olesen, Søren-Peter
Polzik, Eugene S.
author_sort Jensen, Kasper
collection PubMed
description Magnetic fields generated by human and animal organs, such as the heart, brain and nervous system carry information useful for biological and medical purposes. These magnetic fields are most commonly detected using cryogenically-cooled superconducting magnetometers. Here we present the first detection of action potentials from an animal nerve using an optical atomic magnetometer. Using an optimal design we are able to achieve the sensitivity dominated by the quantum shot noise of light and quantum projection noise of atomic spins. Such sensitivity allows us to measure the nerve impulse with a miniature room-temperature sensor which is a critical advantage for biomedical applications. Positioning the sensor at a distance of a few millimeters from the nerve, corresponding to the distance between the skin and nerves in biological studies, we detect the magnetic field generated by an action potential of a frog sciatic nerve. From the magnetic field measurements we determine the activity of the nerve and the temporal shape of the nerve impulse. This work opens new ways towards implementing optical magnetometers as practical devices for medical diagnostics.
format Online
Article
Text
id pubmed-4945862
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49458622016-07-26 Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity Jensen, Kasper Budvytyte, Rima Thomas, Rodrigo A. Wang, Tian Fuchs, Annette M. Balabas, Mikhail V. Vasilakis, Georgios Mosgaard, Lars D. Stærkind, Hans C. Müller, Jörg H. Heimburg, Thomas Olesen, Søren-Peter Polzik, Eugene S. Sci Rep Article Magnetic fields generated by human and animal organs, such as the heart, brain and nervous system carry information useful for biological and medical purposes. These magnetic fields are most commonly detected using cryogenically-cooled superconducting magnetometers. Here we present the first detection of action potentials from an animal nerve using an optical atomic magnetometer. Using an optimal design we are able to achieve the sensitivity dominated by the quantum shot noise of light and quantum projection noise of atomic spins. Such sensitivity allows us to measure the nerve impulse with a miniature room-temperature sensor which is a critical advantage for biomedical applications. Positioning the sensor at a distance of a few millimeters from the nerve, corresponding to the distance between the skin and nerves in biological studies, we detect the magnetic field generated by an action potential of a frog sciatic nerve. From the magnetic field measurements we determine the activity of the nerve and the temporal shape of the nerve impulse. This work opens new ways towards implementing optical magnetometers as practical devices for medical diagnostics. Nature Publishing Group 2016-07-15 /pmc/articles/PMC4945862/ /pubmed/27417378 http://dx.doi.org/10.1038/srep29638 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Jensen, Kasper
Budvytyte, Rima
Thomas, Rodrigo A.
Wang, Tian
Fuchs, Annette M.
Balabas, Mikhail V.
Vasilakis, Georgios
Mosgaard, Lars D.
Stærkind, Hans C.
Müller, Jörg H.
Heimburg, Thomas
Olesen, Søren-Peter
Polzik, Eugene S.
Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity
title Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity
title_full Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity
title_fullStr Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity
title_full_unstemmed Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity
title_short Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity
title_sort non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945862/
https://www.ncbi.nlm.nih.gov/pubmed/27417378
http://dx.doi.org/10.1038/srep29638
work_keys_str_mv AT jensenkasper noninvasivedetectionofanimalnerveimpulseswithanatomicmagnetometeroperatingnearquantumlimitedsensitivity
AT budvytyterima noninvasivedetectionofanimalnerveimpulseswithanatomicmagnetometeroperatingnearquantumlimitedsensitivity
AT thomasrodrigoa noninvasivedetectionofanimalnerveimpulseswithanatomicmagnetometeroperatingnearquantumlimitedsensitivity
AT wangtian noninvasivedetectionofanimalnerveimpulseswithanatomicmagnetometeroperatingnearquantumlimitedsensitivity
AT fuchsannettem noninvasivedetectionofanimalnerveimpulseswithanatomicmagnetometeroperatingnearquantumlimitedsensitivity
AT balabasmikhailv noninvasivedetectionofanimalnerveimpulseswithanatomicmagnetometeroperatingnearquantumlimitedsensitivity
AT vasilakisgeorgios noninvasivedetectionofanimalnerveimpulseswithanatomicmagnetometeroperatingnearquantumlimitedsensitivity
AT mosgaardlarsd noninvasivedetectionofanimalnerveimpulseswithanatomicmagnetometeroperatingnearquantumlimitedsensitivity
AT stærkindhansc noninvasivedetectionofanimalnerveimpulseswithanatomicmagnetometeroperatingnearquantumlimitedsensitivity
AT mullerjorgh noninvasivedetectionofanimalnerveimpulseswithanatomicmagnetometeroperatingnearquantumlimitedsensitivity
AT heimburgthomas noninvasivedetectionofanimalnerveimpulseswithanatomicmagnetometeroperatingnearquantumlimitedsensitivity
AT olesensørenpeter noninvasivedetectionofanimalnerveimpulseswithanatomicmagnetometeroperatingnearquantumlimitedsensitivity
AT polzikeugenes noninvasivedetectionofanimalnerveimpulseswithanatomicmagnetometeroperatingnearquantumlimitedsensitivity