Cargando…

Four-state memory based on a giant and non-volatile converse magnetoelectric effect in FeAl/PIN-PMN-PT structure

We report a stable, tunable and non-volatile converse magnetoelectric effect (ME) in a new type of FeAl/PIN-PMN-PT heterostructure at room temperature, with a giant electrical modulation of magnetization for which the maximum relative magnetization change (ΔM/M) is up to 66%. The 109° ferroelastic d...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Yanping, Gao, Cunxu, Chen, Zhendong, Xi, Shibo, Shao, Weixia, Zhang, Peng, Chen, Guilin, Li, Jiangong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945947/
https://www.ncbi.nlm.nih.gov/pubmed/27417902
http://dx.doi.org/10.1038/srep30002
Descripción
Sumario:We report a stable, tunable and non-volatile converse magnetoelectric effect (ME) in a new type of FeAl/PIN-PMN-PT heterostructure at room temperature, with a giant electrical modulation of magnetization for which the maximum relative magnetization change (ΔM/M) is up to 66%. The 109° ferroelastic domain switching in the PIN-PMN-PT and coupling with the ferromagnetic (FM) film via uniaxial anisotropy originating from the PIN-PMN-PT (011) surface are the key roles in converse ME effect. We also propose here a new, four-state memory through which it is possible to modify the remanent magnetism state by adjusting the electric field. This work represents a helpful approach to securing electric-writing magnetic-reading with low energy consumption for future high-density information storage applications.