Cargando…
Four-state memory based on a giant and non-volatile converse magnetoelectric effect in FeAl/PIN-PMN-PT structure
We report a stable, tunable and non-volatile converse magnetoelectric effect (ME) in a new type of FeAl/PIN-PMN-PT heterostructure at room temperature, with a giant electrical modulation of magnetization for which the maximum relative magnetization change (ΔM/M) is up to 66%. The 109° ferroelastic d...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945947/ https://www.ncbi.nlm.nih.gov/pubmed/27417902 http://dx.doi.org/10.1038/srep30002 |
Sumario: | We report a stable, tunable and non-volatile converse magnetoelectric effect (ME) in a new type of FeAl/PIN-PMN-PT heterostructure at room temperature, with a giant electrical modulation of magnetization for which the maximum relative magnetization change (ΔM/M) is up to 66%. The 109° ferroelastic domain switching in the PIN-PMN-PT and coupling with the ferromagnetic (FM) film via uniaxial anisotropy originating from the PIN-PMN-PT (011) surface are the key roles in converse ME effect. We also propose here a new, four-state memory through which it is possible to modify the remanent magnetism state by adjusting the electric field. This work represents a helpful approach to securing electric-writing magnetic-reading with low energy consumption for future high-density information storage applications. |
---|