Cargando…

In-situ Adsorption-Biological Combined Technology Treating Sediment Phosphorus in all Fractions

The removal efficiency of sediment phosphorus (P) in all fractions with in-situ adsorption-biological combined technology was studied in West Lake, Hangzhou, China. The removal amounts of sediment Ca-P, Fe/Al-P, IP, OP and TP by the combined effect of PCFM (Porous ceramic filter media) and V. spiral...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Y., Wang, C., He, F., Liu, B., Xu, D., Xia, S., Zhou, Q., Wu, Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945969/
https://www.ncbi.nlm.nih.gov/pubmed/27418242
http://dx.doi.org/10.1038/srep29725
Descripción
Sumario:The removal efficiency of sediment phosphorus (P) in all fractions with in-situ adsorption-biological combined technology was studied in West Lake, Hangzhou, China. The removal amounts of sediment Ca-P, Fe/Al-P, IP, OP and TP by the combined effect of PCFM (Porous ceramic filter media) and V. spiralis was 61 mg/kg, 249 mg/kg, 318 mg/kg, 85 mg/kg and 416 mg/kg, respectively, and the corresponding removing rate reached 10.5%, 44.6%, 27.5%, 30.6% and 29.2%. This study suggested that the combination of PCFM and V. spiralis could achieve a synergetic sediment P removal because the removal rates of the combinations were higher than the sum of that of PCFM and macrophytes used separately. From analysis of sediment microbial community and predicted function, we found that the combined PCFM and V. spiralis enhanced the function of P metabolism by increasing specific genus that belong to phylum Firmicutes and Nitrospirae. Thus it can be seen the in-situ adsorption-biological combined technology could be further applied to treat internal P loading in eutrophic waters.