Cargando…
Combination of panobinostat with ponatinib synergistically overcomes imatinib‐resistant CML cells
The major mechanism of imatinib (IM) resistance of CML is the reactivation of ABL kinase either through BCR‐ABL gene amplification or mutation. We investigated the cytotoxicity of a pan‐ABL tyrosine kinase inhibitor, ponatinib, and a pan‐histone deacetylase inhibitor, panobinostat, against IM‐resist...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946706/ https://www.ncbi.nlm.nih.gov/pubmed/27166836 http://dx.doi.org/10.1111/cas.12965 |
_version_ | 1782443060792131584 |
---|---|
author | Matsuda, Yasufumi Yamauchi, Takahiro Hosono, Naoko Uzui, Kanako Negoro, Eiju Morinaga, Koji Nishi, Rie Yoshida, Akira Kimura, Shinya Maekawa, Taira Ueda, Takanori |
author_facet | Matsuda, Yasufumi Yamauchi, Takahiro Hosono, Naoko Uzui, Kanako Negoro, Eiju Morinaga, Koji Nishi, Rie Yoshida, Akira Kimura, Shinya Maekawa, Taira Ueda, Takanori |
author_sort | Matsuda, Yasufumi |
collection | PubMed |
description | The major mechanism of imatinib (IM) resistance of CML is the reactivation of ABL kinase either through BCR‐ABL gene amplification or mutation. We investigated the cytotoxicity of a pan‐ABL tyrosine kinase inhibitor, ponatinib, and a pan‐histone deacetylase inhibitor, panobinostat, against IM‐resistant CML cells in vitro. Two different IM‐resistant cell lines, K562/IM‐R1 and Ba/F3/T315I were evaluated in comparison with their respective, parental cell lines, K562 and Ba/F3. K562/IM‐R1 overexpressed BCR‐ABL due to gene amplification. Ba/F3/T315I was transfected with a BCR‐ABL gene encoding T315I‐mutated BCR‐ABL. Ponatinib inhibited the growth of both K562/IM‐R1 and Ba/F3/T315I as potently as it inhibited their parental cells with an IC (50) of 2–30 nM. Panobinostat also similarly inhibited the growth of all of the cell lines with an IC (50) of 40–51 nM. This was accompanied by reduced histone deacetylase activity, induced histone H3 acetylation, and an increased protein level of heat shock protein 70, which suggested disruption of heat shock protein 90 chaperone function for BCR‐ABL and its degradation. Importantly, the combination of ponatinib with panobinostat showed synergistic growth inhibition and induced a higher level of apoptosis than the sum of the apoptosis induced by each agent alone in all of the cell lines. Ponatinib inhibited phosphorylation not only of BCR‐ABL but also of downstream signal transducer and activator of transcription 5, protein kinase B, and ERK1/2 in both K562/IM‐R1 and Ba/F3/T315I, and the addition of panobinostat to ponatinib further inhibited these phosphorylations. In conclusion, panobinostat enhanced the cytotoxicity of ponatinib towards IM‐resistant CML cells including those with T315I‐mutated BCR‐ABL. |
format | Online Article Text |
id | pubmed-4946706 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-49467062016-07-27 Combination of panobinostat with ponatinib synergistically overcomes imatinib‐resistant CML cells Matsuda, Yasufumi Yamauchi, Takahiro Hosono, Naoko Uzui, Kanako Negoro, Eiju Morinaga, Koji Nishi, Rie Yoshida, Akira Kimura, Shinya Maekawa, Taira Ueda, Takanori Cancer Sci Original Articles The major mechanism of imatinib (IM) resistance of CML is the reactivation of ABL kinase either through BCR‐ABL gene amplification or mutation. We investigated the cytotoxicity of a pan‐ABL tyrosine kinase inhibitor, ponatinib, and a pan‐histone deacetylase inhibitor, panobinostat, against IM‐resistant CML cells in vitro. Two different IM‐resistant cell lines, K562/IM‐R1 and Ba/F3/T315I were evaluated in comparison with their respective, parental cell lines, K562 and Ba/F3. K562/IM‐R1 overexpressed BCR‐ABL due to gene amplification. Ba/F3/T315I was transfected with a BCR‐ABL gene encoding T315I‐mutated BCR‐ABL. Ponatinib inhibited the growth of both K562/IM‐R1 and Ba/F3/T315I as potently as it inhibited their parental cells with an IC (50) of 2–30 nM. Panobinostat also similarly inhibited the growth of all of the cell lines with an IC (50) of 40–51 nM. This was accompanied by reduced histone deacetylase activity, induced histone H3 acetylation, and an increased protein level of heat shock protein 70, which suggested disruption of heat shock protein 90 chaperone function for BCR‐ABL and its degradation. Importantly, the combination of ponatinib with panobinostat showed synergistic growth inhibition and induced a higher level of apoptosis than the sum of the apoptosis induced by each agent alone in all of the cell lines. Ponatinib inhibited phosphorylation not only of BCR‐ABL but also of downstream signal transducer and activator of transcription 5, protein kinase B, and ERK1/2 in both K562/IM‐R1 and Ba/F3/T315I, and the addition of panobinostat to ponatinib further inhibited these phosphorylations. In conclusion, panobinostat enhanced the cytotoxicity of ponatinib towards IM‐resistant CML cells including those with T315I‐mutated BCR‐ABL. John Wiley and Sons Inc. 2016-06-21 2016-07 /pmc/articles/PMC4946706/ /pubmed/27166836 http://dx.doi.org/10.1111/cas.12965 Text en © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Matsuda, Yasufumi Yamauchi, Takahiro Hosono, Naoko Uzui, Kanako Negoro, Eiju Morinaga, Koji Nishi, Rie Yoshida, Akira Kimura, Shinya Maekawa, Taira Ueda, Takanori Combination of panobinostat with ponatinib synergistically overcomes imatinib‐resistant CML cells |
title | Combination of panobinostat with ponatinib synergistically overcomes imatinib‐resistant CML cells |
title_full | Combination of panobinostat with ponatinib synergistically overcomes imatinib‐resistant CML cells |
title_fullStr | Combination of panobinostat with ponatinib synergistically overcomes imatinib‐resistant CML cells |
title_full_unstemmed | Combination of panobinostat with ponatinib synergistically overcomes imatinib‐resistant CML cells |
title_short | Combination of panobinostat with ponatinib synergistically overcomes imatinib‐resistant CML cells |
title_sort | combination of panobinostat with ponatinib synergistically overcomes imatinib‐resistant cml cells |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946706/ https://www.ncbi.nlm.nih.gov/pubmed/27166836 http://dx.doi.org/10.1111/cas.12965 |
work_keys_str_mv | AT matsudayasufumi combinationofpanobinostatwithponatinibsynergisticallyovercomesimatinibresistantcmlcells AT yamauchitakahiro combinationofpanobinostatwithponatinibsynergisticallyovercomesimatinibresistantcmlcells AT hosononaoko combinationofpanobinostatwithponatinibsynergisticallyovercomesimatinibresistantcmlcells AT uzuikanako combinationofpanobinostatwithponatinibsynergisticallyovercomesimatinibresistantcmlcells AT negoroeiju combinationofpanobinostatwithponatinibsynergisticallyovercomesimatinibresistantcmlcells AT morinagakoji combinationofpanobinostatwithponatinibsynergisticallyovercomesimatinibresistantcmlcells AT nishirie combinationofpanobinostatwithponatinibsynergisticallyovercomesimatinibresistantcmlcells AT yoshidaakira combinationofpanobinostatwithponatinibsynergisticallyovercomesimatinibresistantcmlcells AT kimurashinya combinationofpanobinostatwithponatinibsynergisticallyovercomesimatinibresistantcmlcells AT maekawataira combinationofpanobinostatwithponatinibsynergisticallyovercomesimatinibresistantcmlcells AT uedatakanori combinationofpanobinostatwithponatinibsynergisticallyovercomesimatinibresistantcmlcells |