Cargando…

Development of polymeric micelles for targeting intractable cancers

In relation to recent advances in nanobiotechnologies, cancer‐targeted therapy using nano‐scaled drug carriers (nanocarriers) has been attracting enormous attention with success in clinical studies. Polymeric micelles, core–shell‐type nanoparticles formed through the self‐assembly of block copolymer...

Descripción completa

Detalles Bibliográficos
Autores principales: Nishiyama, Nobuhiro, Matsumura, Yasuhiro, Kataoka, Kazunori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946707/
https://www.ncbi.nlm.nih.gov/pubmed/27116635
http://dx.doi.org/10.1111/cas.12960
Descripción
Sumario:In relation to recent advances in nanobiotechnologies, cancer‐targeted therapy using nano‐scaled drug carriers (nanocarriers) has been attracting enormous attention with success in clinical studies. Polymeric micelles, core–shell‐type nanoparticles formed through the self‐assembly of block copolymers, are one of the most promising nanocarrier, because their critical features such as size, stability, and drug incorporation efficiency and release rate can be modulated by designing the constituent block copolymers. The utilities of polymeric micelles have been reported not only in experimental tumor models in mice but also in clinical studies. In this article, we aim to explain the rationale of designing polymeric micelles for targeting intractable cancers such as pancreatic cancer, glioblastoma, and metastases. Also, we review recent progress in clinical studies on polymeric micelles incorporating anticancer drugs. In addition, we introduce the next generation of polymeric micelles as the platform integrated with smart functionalities such as targetability, environmental sensitivity, and imaging properties. Thus, polymeric micelles can realize safe and effective cancer therapy, and offer tailor‐made medicines for individual patients.