Cargando…

Adaptive Dimensionality Reduction with Semi-Supervision (AdDReSS): Classifying Multi-Attribute Biomedical Data

Medical diagnostics is often a multi-attribute problem, necessitating sophisticated tools for analyzing high-dimensional biomedical data. Mining this data often results in two crucial bottlenecks: 1) high dimensionality of features used to represent rich biological data and 2) small amounts of label...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, George, Romo Bucheli, David Edmundo, Madabhushi, Anant
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946789/
https://www.ncbi.nlm.nih.gov/pubmed/27421116
http://dx.doi.org/10.1371/journal.pone.0159088
Descripción
Sumario:Medical diagnostics is often a multi-attribute problem, necessitating sophisticated tools for analyzing high-dimensional biomedical data. Mining this data often results in two crucial bottlenecks: 1) high dimensionality of features used to represent rich biological data and 2) small amounts of labelled training data due to the expense of consulting highly specific medical expertise necessary to assess each study. Currently, no approach that we are aware of has attempted to use active learning in the context of dimensionality reduction approaches for improving the construction of low dimensional representations. We present our novel methodology, AdDReSS (Adaptive Dimensionality Reduction with Semi-Supervision), to demonstrate that fewer labeled instances identified via AL in embedding space are needed for creating a more discriminative embedding representation compared to randomly selected instances. We tested our methodology on a wide variety of domains ranging from prostate gene expression, ovarian proteomic spectra, brain magnetic resonance imaging, and breast histopathology. Across these various high dimensional biomedical datasets with 100+ observations each and all parameters considered, the median classification accuracy across all experiments showed AdDReSS (88.7%) to outperform SSAGE, a SSDR method using random sampling (85.5%), and Graph Embedding (81.5%). Furthermore, we found that embeddings generated via AdDReSS achieved a mean 35.95% improvement in Raghavan efficiency, a measure of learning rate, over SSAGE. Our results demonstrate the value of AdDReSS to provide low dimensional representations of high dimensional biomedical data while achieving higher classification rates with fewer labelled examples as compared to without active learning.