Cargando…
Adaptive Dimensionality Reduction with Semi-Supervision (AdDReSS): Classifying Multi-Attribute Biomedical Data
Medical diagnostics is often a multi-attribute problem, necessitating sophisticated tools for analyzing high-dimensional biomedical data. Mining this data often results in two crucial bottlenecks: 1) high dimensionality of features used to represent rich biological data and 2) small amounts of label...
Autores principales: | Lee, George, Romo Bucheli, David Edmundo, Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946789/ https://www.ncbi.nlm.nih.gov/pubmed/27421116 http://dx.doi.org/10.1371/journal.pone.0159088 |
Ejemplares similares
-
Drug Reaction with Eosinophilia and Systemic Symptoms (DReSS)/Drug-Induced Hypersensitivity Syndrome (DiHS)—Readdressing the DReSS
por: Stirton, Hannah, et al.
Publicado: (2022) -
Semi-supervised classifier guided by discriminator
por: Jamroziński, Sebastian, et al.
Publicado: (2022) -
Out-of-Sample Extrapolation utilizing Semi-Supervised Manifold Learning (OSE-SSL): Content Based Image Retrieval for Histopathology Images
por: Sparks, Rachel, et al.
Publicado: (2016) -
Automated Tubule Nuclei Quantification and Correlation with Oncotype DX risk categories in ER+ Breast Cancer Whole Slide Images
por: Romo-Bucheli, David, et al.
Publicado: (2016) -
Semi-supervised method for biomedical event extraction
por: Wang, Jian, et al.
Publicado: (2013)