Cargando…
Computational assessment of feature combinations for pathogenic variant prediction
BACKGROUND: Although several methods have been proposed for predicting the effects of genetic variants and their role in disease, it is still a challenge to identify and prioritize pathogenic variants within sequencing studies. METHODS: Here, we compare different variant and gene‐specific features a...
Autores principales: | König, Eva, Rainer, Johannes, Domingues, Francisco S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947862/ https://www.ncbi.nlm.nih.gov/pubmed/27468419 http://dx.doi.org/10.1002/mgg3.214 |
Ejemplares similares
-
Type IV Collagen Variants in CKD: Performance of Computational Predictions for Identifying Pathogenic Variants
por: Shulman, Cole, et al.
Publicado: (2021) -
Biological relevance of computationally predicted pathogenicity of noncoding variants
por: Liu, Li, et al.
Publicado: (2019) -
Predicting the pathogenicity of missense variants using features derived from AlphaFold2
por: Schmidt, Axel, et al.
Publicado: (2023) -
Computational Prediction of the Pathogenic Status of Cancer-Specific Somatic Variants
por: Feizi, Nikta, et al.
Publicado: (2022) -
Optimization of prediction methods for risk assessment of pathogenic germline variants in the Japanese population
por: Senda, Noriko, et al.
Publicado: (2021)