Cargando…
Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble
Characterizing precipitation seasonality and variability in the face of future uncertainty is important for a well-informed climate change adaptation strategy. Using the Colwell index of predictability and monthly normalized precipitation data from the Coupled Model Intercomparison Project Phase 5 (...
Autores principales: | Jiang, Mingkai, Felzer, Benjamin S., Sahagian, Dork |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947969/ https://www.ncbi.nlm.nih.gov/pubmed/27425819 http://dx.doi.org/10.1038/srep29962 |
Ejemplares similares
-
Corrigendum: Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble
por: Jiang, Mingkai, et al.
Publicado: (2016) -
Satellite-based soil moisture provides missing link between summertime precipitation and surface temperature biases in CMIP5 simulations over conterminous United States
por: Al-Yaari, A., et al.
Publicado: (2019) -
Precipitation Biases in CMIP5 Models over the South Asian Region
por: Pathak, Raju, et al.
Publicado: (2019) -
Regional Climate Sensitivity of Climate Extremes in CMIP6 Versus CMIP5 Multimodel Ensembles
por: Seneviratne, Sonia I., et al.
Publicado: (2020) -
A Landscape Assessment and Associated Dataset of Stream Confluences for the Conterminous U.S.
por: Ebert, Donald, et al.
Publicado: (2020)